Emília Bősz, Viktor M Plattner, László Biró, Kata Kóta, Marco A Diana, László Acsády
{"title":"A cortico-subcortical loop for motor control via the pontine reticular formation.","authors":"Emília Bősz, Viktor M Plattner, László Biró, Kata Kóta, Marco A Diana, László Acsády","doi":"10.1016/j.celrep.2025.115230","DOIUrl":null,"url":null,"abstract":"<p><p>Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear. Here, we demonstrate that the secondary motor and cingulate cortices (M2/Cg) target and strongly control the activity of glycine transporter 2-positive (GlyT2+) cells in the pontine reticular formation (PRF). In turn, PRF/GlyT2+ cells project to and powerfully inhibit the intralaminar/parafascicular nuclei of the thalamus (IL/Pf). M2/Cg cells co-innervate PRF/GlyT2+ cells and the IL/Pf. Thalamus-projecting PRF/GlyT2+ cells target ipsilateral subcortical regions distinct from BG targets. Activation of the thalamus-projecting PRF/GlyT2+ cells leads to contralateral turning. These results demonstrate that the PRF is part of a cortico-subcortical loop that regulates motor activity parallel to BG circuits. The cortico-PRF-thalamus loop can control turning synergistically with the BG loops via distinct descending pathways.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115230"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115230","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear. Here, we demonstrate that the secondary motor and cingulate cortices (M2/Cg) target and strongly control the activity of glycine transporter 2-positive (GlyT2+) cells in the pontine reticular formation (PRF). In turn, PRF/GlyT2+ cells project to and powerfully inhibit the intralaminar/parafascicular nuclei of the thalamus (IL/Pf). M2/Cg cells co-innervate PRF/GlyT2+ cells and the IL/Pf. Thalamus-projecting PRF/GlyT2+ cells target ipsilateral subcortical regions distinct from BG targets. Activation of the thalamus-projecting PRF/GlyT2+ cells leads to contralateral turning. These results demonstrate that the PRF is part of a cortico-subcortical loop that regulates motor activity parallel to BG circuits. The cortico-PRF-thalamus loop can control turning synergistically with the BG loops via distinct descending pathways.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.