Injectable thermosensitive antibiotic-laden chitosan hydrogel for regenerative endodontics

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Alexandre Henrique dos Reis-Prado , Maedeh Rahimnejad , Renan Dal-Fabbro , Priscila Toninatto Alves de Toledo , Caroline Anselmi , Pedro Henrique Chaves de Oliveira , J. Christopher Fenno , Luciano Tavares Angelo Cintra , Francine Benetti , Marco C. Bottino
{"title":"Injectable thermosensitive antibiotic-laden chitosan hydrogel for regenerative endodontics","authors":"Alexandre Henrique dos Reis-Prado ,&nbsp;Maedeh Rahimnejad ,&nbsp;Renan Dal-Fabbro ,&nbsp;Priscila Toninatto Alves de Toledo ,&nbsp;Caroline Anselmi ,&nbsp;Pedro Henrique Chaves de Oliveira ,&nbsp;J. Christopher Fenno ,&nbsp;Luciano Tavares Angelo Cintra ,&nbsp;Francine Benetti ,&nbsp;Marco C. Bottino","doi":"10.1016/j.bioactmat.2024.12.026","DOIUrl":null,"url":null,"abstract":"<div><div>Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The thermosensitivity, gelation kinetics, compressive strength, cytocompatibility, and antibacterial efficacy were evaluated according to well-established protocols. An <em>in vivo</em> model of periapical disease and evoked bleeding in rats' immature permanent teeth was performed to determine disinfection, tissue repair, and root formation. AZI was successfully incorporated into interconnected porous CH hydrogels, which retained their thermosensitivity. The mechanical and rheological findings indicated that adding AZI did not adversely affect the hydrogels’ strength and injectability. Incorporating 3 % and 5 % AZI into the hydrogels led to minimal cytotoxic effects compared to higher concentrations while enhancing the antibacterial response against endodontic bacteria. AZI-laden hydrogel significantly decreased <em>E. faecalis</em> biofilm compared to the controls. Regarding tissue response, the 3 % AZI-laden hydrogel improved mineralized tissue formation and vascularization compared to untreated teeth and those treated with double antibiotic paste. Our findings demonstrate that adding 3 % AZI into CH hydrogels ablates infection and supports neotissue formation <em>in vivo</em> when applied to a clinically relevant model of regenerative endodontics.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"46 ","pages":"Pages 406-422"},"PeriodicalIF":18.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24005632","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR). The thermosensitivity, gelation kinetics, compressive strength, cytocompatibility, and antibacterial efficacy were evaluated according to well-established protocols. An in vivo model of periapical disease and evoked bleeding in rats' immature permanent teeth was performed to determine disinfection, tissue repair, and root formation. AZI was successfully incorporated into interconnected porous CH hydrogels, which retained their thermosensitivity. The mechanical and rheological findings indicated that adding AZI did not adversely affect the hydrogels’ strength and injectability. Incorporating 3 % and 5 % AZI into the hydrogels led to minimal cytotoxic effects compared to higher concentrations while enhancing the antibacterial response against endodontic bacteria. AZI-laden hydrogel significantly decreased E. faecalis biofilm compared to the controls. Regarding tissue response, the 3 % AZI-laden hydrogel improved mineralized tissue formation and vascularization compared to untreated teeth and those treated with double antibiotic paste. Our findings demonstrate that adding 3 % AZI into CH hydrogels ablates infection and supports neotissue formation in vivo when applied to a clinically relevant model of regenerative endodontics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信