A handheld milk conductivity sensing device (Mylee) for measuring secretory activation progress in lactating women: a device validation study.

IF 2.8 2区 医学 Q1 OBSTETRICS & GYNECOLOGY
Sharon Haramati, Anastasia Firsow, Daniela Abigail Navarro, Ravid Shechter
{"title":"A handheld milk conductivity sensing device (Mylee) for measuring secretory activation progress in lactating women: a device validation study.","authors":"Sharon Haramati, Anastasia Firsow, Daniela Abigail Navarro, Ravid Shechter","doi":"10.1186/s12884-025-07141-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human milk electrolytes are known biomarkers of stages of lactation in the first weeks after birth. However, methods for measuring milk electrolytes are available only in laboratory or expert settings. A small handheld milk sensing device (Mylee) capable of determining on-site individual secretory activation progress from sensing the conductivity of a tiny milk specimen was developed. Here we evaluate the validity of a novel milk-sensing device (Mylee) for measuring the progress of milk maturation and secretory activation status.</p><p><strong>Methods: </strong>Retrospective data analysis of laboratory records generated using the Mylee device. Device conductivity measurements were assessed for accuracy, reliability and stability in rigorous laboratory tests with standard materials. A set of human milk specimens (n = 167) was used to analyze the agreement between the milk maturation score and laboratory measurements of the secretory activation biomarker milk sodium [Na+].</p><p><strong>Results: </strong>The Mylee device was demonstrated to have excellent reproducibility (CV<sub>95%<</sub>5%) and accuracy (error < 5%) for conductivity measurements of a small specimen (350 µl), with good device stability and almost perfect inter-device unit reliability (ICC > 0.90). With regression analysis, we revealed excellent agreement between Mylee milk maturation (MM%) output or its raw conductivity signal and laboratory measurements of conductivity and sodium [Na+] in a dataset of milk specimens (n = 167; R<sup>2</sup> > 0.9). The Mylee MM% score showed good predictive ability for secretary activation status, as determined by sodium threshold (18 mmol/L) in human milk specimens.</p><p><strong>Conclusions: </strong>In this study, we demonstrated the reliability and validity of the Mylee device and its ability to detect on-site milk secretory activation in a manner comparable to that of electrolyte-based methods. The novel MyLee device offers the potential to generate real-time information about the lactation stage, measured by mothers at the commodity of their home.</p>","PeriodicalId":9033,"journal":{"name":"BMC Pregnancy and Childbirth","volume":"25 1","pages":"60"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pregnancy and Childbirth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12884-025-07141-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Human milk electrolytes are known biomarkers of stages of lactation in the first weeks after birth. However, methods for measuring milk electrolytes are available only in laboratory or expert settings. A small handheld milk sensing device (Mylee) capable of determining on-site individual secretory activation progress from sensing the conductivity of a tiny milk specimen was developed. Here we evaluate the validity of a novel milk-sensing device (Mylee) for measuring the progress of milk maturation and secretory activation status.

Methods: Retrospective data analysis of laboratory records generated using the Mylee device. Device conductivity measurements were assessed for accuracy, reliability and stability in rigorous laboratory tests with standard materials. A set of human milk specimens (n = 167) was used to analyze the agreement between the milk maturation score and laboratory measurements of the secretory activation biomarker milk sodium [Na+].

Results: The Mylee device was demonstrated to have excellent reproducibility (CV95%<5%) and accuracy (error < 5%) for conductivity measurements of a small specimen (350 µl), with good device stability and almost perfect inter-device unit reliability (ICC > 0.90). With regression analysis, we revealed excellent agreement between Mylee milk maturation (MM%) output or its raw conductivity signal and laboratory measurements of conductivity and sodium [Na+] in a dataset of milk specimens (n = 167; R2 > 0.9). The Mylee MM% score showed good predictive ability for secretary activation status, as determined by sodium threshold (18 mmol/L) in human milk specimens.

Conclusions: In this study, we demonstrated the reliability and validity of the Mylee device and its ability to detect on-site milk secretory activation in a manner comparable to that of electrolyte-based methods. The novel MyLee device offers the potential to generate real-time information about the lactation stage, measured by mothers at the commodity of their home.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Pregnancy and Childbirth
BMC Pregnancy and Childbirth OBSTETRICS & GYNECOLOGY-
CiteScore
4.90
自引率
6.50%
发文量
845
审稿时长
3-8 weeks
期刊介绍: BMC Pregnancy & Childbirth is an open access, peer-reviewed journal that considers articles on all aspects of pregnancy and childbirth. The journal welcomes submissions on the biomedical aspects of pregnancy, breastfeeding, labor, maternal health, maternity care, trends and sociological aspects of pregnancy and childbirth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信