Structural elucidation of the O-antigen polysaccharide from shigatoxin-producing E. coli O179 using genetic information, NMR spectroscopy and the CASPER program.
{"title":"Structural elucidation of the O-antigen polysaccharide from shigatoxin-producing E. coli O179 using genetic information, NMR spectroscopy and the CASPER program.","authors":"Carolina Fontana, Andrej Weintraub, Göran Widmalm","doi":"10.1016/j.carres.2025.109382","DOIUrl":null,"url":null,"abstract":"<p><p>The serological properties of the O-antigen polysaccharide region of the lipopolysaccharides are used to differentiate E. coli strains into serogroups. In this study, we report the structure elucidation of the O-specific chain of E. coli O179 using NMR data, the program CASPER and analysis of biosynthetic information available in the E. coli O-antigen Database (ECODAB). The presence of genes that encode enzymes involved in the biosynthesis of the GDP-Man and UDP-GlcA within the O-antigen gene cluster of the bacteria indicates that the corresponding residues could be present in the polysaccharide. Furthermore, the occurrence of four genes that encode for glycosyltransferases indicates that the polysaccharide is composed of pentasaccharide repeating units; a bioinformatics approach based on predictive glycosyltransferase functions present in ECODAB revealed that the β-d-Manp-(1→4)-β-d-Manp-(1→3)-d-GlcpNAc structural element could be present in the O-specific chain. NMR spectroscopy data obtained from homonuclear and heteronuclear 2D NMR spectra (<sup>1</sup>H,<sup>1</sup>H-TOCSY, <sup>1</sup>H,<sup>13</sup>C-HSQC, <sup>1</sup>H,<sup>13</sup>C-H2BC and <sup>1</sup>H,<sup>13</sup>C-HMBC) were analyzed using the CASPER program, revealing the following arrangement of monosaccharide residues as the most probable structure: →4)-α-d-GlcpA-(1→3)-[β-d-Glcp-(1→2)]β-d-Manp-(1→4)-β-d-Manp-(1→3)-β-d-GlcpNAc-(1→, which was further confirmed using 2D homonuclear <sup>1</sup>H,<sup>1</sup>H-COSY and <sup>1</sup>H,<sup>1</sup>H-NOESY spectra. The functions of the α-gluconosyltransferase and the β-glucosyltransferase were predicted using structural alignment of AlphaFold-predicted 3D structures. This O-antigen polysaccharide shares structural similarities with those of E. coli O6 and O188, S. boydii type 16, and the capsular polysaccharide of E. coli K43, explaining the serological cross-reactivities observed with strains belonging these O- and K-antigen groups.</p>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"550 ","pages":"109382"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carres.2025.109382","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The serological properties of the O-antigen polysaccharide region of the lipopolysaccharides are used to differentiate E. coli strains into serogroups. In this study, we report the structure elucidation of the O-specific chain of E. coli O179 using NMR data, the program CASPER and analysis of biosynthetic information available in the E. coli O-antigen Database (ECODAB). The presence of genes that encode enzymes involved in the biosynthesis of the GDP-Man and UDP-GlcA within the O-antigen gene cluster of the bacteria indicates that the corresponding residues could be present in the polysaccharide. Furthermore, the occurrence of four genes that encode for glycosyltransferases indicates that the polysaccharide is composed of pentasaccharide repeating units; a bioinformatics approach based on predictive glycosyltransferase functions present in ECODAB revealed that the β-d-Manp-(1→4)-β-d-Manp-(1→3)-d-GlcpNAc structural element could be present in the O-specific chain. NMR spectroscopy data obtained from homonuclear and heteronuclear 2D NMR spectra (1H,1H-TOCSY, 1H,13C-HSQC, 1H,13C-H2BC and 1H,13C-HMBC) were analyzed using the CASPER program, revealing the following arrangement of monosaccharide residues as the most probable structure: →4)-α-d-GlcpA-(1→3)-[β-d-Glcp-(1→2)]β-d-Manp-(1→4)-β-d-Manp-(1→3)-β-d-GlcpNAc-(1→, which was further confirmed using 2D homonuclear 1H,1H-COSY and 1H,1H-NOESY spectra. The functions of the α-gluconosyltransferase and the β-glucosyltransferase were predicted using structural alignment of AlphaFold-predicted 3D structures. This O-antigen polysaccharide shares structural similarities with those of E. coli O6 and O188, S. boydii type 16, and the capsular polysaccharide of E. coli K43, explaining the serological cross-reactivities observed with strains belonging these O- and K-antigen groups.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".