Sascha Müller, Jacek Fiutowski, Maja Bar Rasmussen, Tonci Balic Zunic, Horst-Gunter Rubahn, Nicole R Posth
{"title":"Nanoplastic in aqueous environments: The role of chemo-electric properties for nanoplastic-mineral interaction.","authors":"Sascha Müller, Jacek Fiutowski, Maja Bar Rasmussen, Tonci Balic Zunic, Horst-Gunter Rubahn, Nicole R Posth","doi":"10.1016/j.scitotenv.2025.178529","DOIUrl":null,"url":null,"abstract":"<p><p>Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.5). These conditions minimize potential chemical effects from ions in solution, isolating the impact of mineral complexity. Surface-modified polystyrene nanoparticles (-COOH and -NH2 functional groups) are proxies for degradation products and organic associations found in environmental plastics. Experimental results are compared with theoretical predictions using DLVO (Derjaguin-Landau-Verwey-Overbeek) double-layer force models. Despite all studied minerals maintaining negative surface charges across varying pH, electrostatic double-layer (EDL) interactions played a minor role in NP attachment. Instead, mechanisms such as specific ion-binding interactions (mediated by trace metal ions), bridging via divalent ions, and hydrogen bonding were more significant. Evidence suggests that kinetic effects for most mineral-NP combinations persist beyond 24 h. This study highlights the critical role of biogeochemical and mineralogical composition in controlling NP attachment and release in subsurface environments, with implications for their transport and fate in aquifers.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"964 ","pages":"178529"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2025.178529","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.5). These conditions minimize potential chemical effects from ions in solution, isolating the impact of mineral complexity. Surface-modified polystyrene nanoparticles (-COOH and -NH2 functional groups) are proxies for degradation products and organic associations found in environmental plastics. Experimental results are compared with theoretical predictions using DLVO (Derjaguin-Landau-Verwey-Overbeek) double-layer force models. Despite all studied minerals maintaining negative surface charges across varying pH, electrostatic double-layer (EDL) interactions played a minor role in NP attachment. Instead, mechanisms such as specific ion-binding interactions (mediated by trace metal ions), bridging via divalent ions, and hydrogen bonding were more significant. Evidence suggests that kinetic effects for most mineral-NP combinations persist beyond 24 h. This study highlights the critical role of biogeochemical and mineralogical composition in controlling NP attachment and release in subsurface environments, with implications for their transport and fate in aquifers.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.