Seyedmahdi Hosseinitabatabaei, Isabela Vitienes, Maximillian Rummler, Annette Birkhold, Frank Rauch, Bettina M Willie
{"title":"Non-invasive quantification of bone (re) modeling dynamics in adults with osteogenesis imperfecta treated with Setrusumab using timelapse HR-pQCT.","authors":"Seyedmahdi Hosseinitabatabaei, Isabela Vitienes, Maximillian Rummler, Annette Birkhold, Frank Rauch, Bettina M Willie","doi":"10.1093/jbmr/zjaf013","DOIUrl":null,"url":null,"abstract":"<p><p>Timelapse imaging using high-resolution peripheral quantitative computed tomography (HR-pQCT) has emerged as a noninvasive method to quantify bone (re)modelling. However, there is no consensus on how to perform the procedure. As part of the ASTEROID phase-2b multicenter trial, we used 29 same-day repeated scans from adults with osteogenesis imperfecta (OI) to identify a method that minimized measurement error. We evaluated input image type, registration method, segmentation mask, and for grayscale images various values for the voxel density difference considered formed or resorbed, minimum formation/resorption cluster size, and Gaussian smoothing sigma. We verified the accuracy of our method and then used it on longitudinal scans (baseline, 6, 12, 18 and 24 month) from 78 participants to assess bone formation and resorption induced by an anabolic (setrusumab) and anti-catabolic (zoledronic acid) treatments as part of the ASTEROID trial. Regardless of image registration method, binary input images resulted in large errors ~13% and ~ 8% for first- and second-generation scanners, respectively. For the grayscale input images, errors were smaller for 3D compared to matched angle registration. For both scanner generations, a density threshold of 200mgHA/cm3 combined with Gaussian noise reduction resulted in errors <1%. We verified the method was accurate by showing that similar regions of bone formation and resorption were identified when comparing each scan from the same-day repeated scans with a scan from another timepoint. Timelapse analysis revealed a dose-dependent increase in bone formation and resorption with setrusumab treatment. Zoledronic acid altered bone changes in favor of formation, although no changes reached statistical significance. This study identifies a timelapse method that minimizes measurement error, which can be used in future studies to improve the uniformity of results. This noninvasive imaging biomarker revealed dose dependent bone (re) modeling outcomes from one year of setrusumab treatment in adults with OI.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjaf013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Timelapse imaging using high-resolution peripheral quantitative computed tomography (HR-pQCT) has emerged as a noninvasive method to quantify bone (re)modelling. However, there is no consensus on how to perform the procedure. As part of the ASTEROID phase-2b multicenter trial, we used 29 same-day repeated scans from adults with osteogenesis imperfecta (OI) to identify a method that minimized measurement error. We evaluated input image type, registration method, segmentation mask, and for grayscale images various values for the voxel density difference considered formed or resorbed, minimum formation/resorption cluster size, and Gaussian smoothing sigma. We verified the accuracy of our method and then used it on longitudinal scans (baseline, 6, 12, 18 and 24 month) from 78 participants to assess bone formation and resorption induced by an anabolic (setrusumab) and anti-catabolic (zoledronic acid) treatments as part of the ASTEROID trial. Regardless of image registration method, binary input images resulted in large errors ~13% and ~ 8% for first- and second-generation scanners, respectively. For the grayscale input images, errors were smaller for 3D compared to matched angle registration. For both scanner generations, a density threshold of 200mgHA/cm3 combined with Gaussian noise reduction resulted in errors <1%. We verified the method was accurate by showing that similar regions of bone formation and resorption were identified when comparing each scan from the same-day repeated scans with a scan from another timepoint. Timelapse analysis revealed a dose-dependent increase in bone formation and resorption with setrusumab treatment. Zoledronic acid altered bone changes in favor of formation, although no changes reached statistical significance. This study identifies a timelapse method that minimizes measurement error, which can be used in future studies to improve the uniformity of results. This noninvasive imaging biomarker revealed dose dependent bone (re) modeling outcomes from one year of setrusumab treatment in adults with OI.
期刊介绍:
The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.