A A García, Y L Roht, I Ippolito, D Salin, G Drazer, J P Hulin, G Gauthier
{"title":"Microstructure response of concentrated suspensions to flow reversal.","authors":"A A García, Y L Roht, I Ippolito, D Salin, G Drazer, J P Hulin, G Gauthier","doi":"10.1140/epje/s10189-025-00472-9","DOIUrl":null,"url":null,"abstract":"<p><p>We study experimentally at the macroscopic and microstructure scale a dense suspension of non-Brownian neutrally buoyant spherical particles experiencing periodic reversals of flow at constant rate between parallel plates and tracked individually. We first characterize the quasi-steady state reached at the end of half periods. The volume fraction of particles increases from the walls to the center as a result of migration induced by the nonuniform strain rate. Except very close to the walls and the center, the particle pair distribution is fore-aft asymmetric with depletions of pairs in the extensional quadrants, similar to that reported for shear flows of same volume fraction as the local one. The dynamics of the periodic rearrangements occurring after each flow reversal are characterized by a microstructure tensor component. The relaxation time characterizing the reorganization increases from the walls to the center due to the inhomogeneous strain rate. On the other hand, the local accumulated strain required for this reorganization decreases with the volume fraction, like for viscosity measurements in uniform strain rate conditions. However, the variation of the microstructure with the accumulated strain is faster than that of the viscosity, showing the complementarity of the two measurements.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 1","pages":"7"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1140/epje/s10189-025-00472-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We study experimentally at the macroscopic and microstructure scale a dense suspension of non-Brownian neutrally buoyant spherical particles experiencing periodic reversals of flow at constant rate between parallel plates and tracked individually. We first characterize the quasi-steady state reached at the end of half periods. The volume fraction of particles increases from the walls to the center as a result of migration induced by the nonuniform strain rate. Except very close to the walls and the center, the particle pair distribution is fore-aft asymmetric with depletions of pairs in the extensional quadrants, similar to that reported for shear flows of same volume fraction as the local one. The dynamics of the periodic rearrangements occurring after each flow reversal are characterized by a microstructure tensor component. The relaxation time characterizing the reorganization increases from the walls to the center due to the inhomogeneous strain rate. On the other hand, the local accumulated strain required for this reorganization decreases with the volume fraction, like for viscosity measurements in uniform strain rate conditions. However, the variation of the microstructure with the accumulated strain is faster than that of the viscosity, showing the complementarity of the two measurements.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.