Liquid biopsy technologies: innovations and future directions in breast cancer biomarker detection

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Linhong Cao, Qingli Duan, Zixin Zhu, Xuejing Xu, Jinbo Liu, Baolin Li
{"title":"Liquid biopsy technologies: innovations and future directions in breast cancer biomarker detection","authors":"Linhong Cao,&nbsp;Qingli Duan,&nbsp;Zixin Zhu,&nbsp;Xuejing Xu,&nbsp;Jinbo Liu,&nbsp;Baolin Li","doi":"10.1007/s10544-025-00734-5","DOIUrl":null,"url":null,"abstract":"<div><p>Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness. This review provides an overview of the latest progress of liquid biopsy biomarkers in the diagnosis, prognosis and treatment of breast cancer, compares the application and advantages of different biosensors based on these biomarkers in the diagnosis of breast cancer, and analyzes the limitations and solutions of biosensor based methods.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00734-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness. This review provides an overview of the latest progress of liquid biopsy biomarkers in the diagnosis, prognosis and treatment of breast cancer, compares the application and advantages of different biosensors based on these biomarkers in the diagnosis of breast cancer, and analyzes the limitations and solutions of biosensor based methods.

液体活检技术:乳腺癌生物标志物检测的创新和未来方向。
在全球范围内,乳腺癌是最常见的癌症类型,其早期诊断和筛查可以显着提高患者的生存概率和生活质量。基于液体活检的靶点,如循环肿瘤细胞、循环肿瘤DNA和外泌体,在癌症的早期发现中发挥了重要作用,并被发现在分期治疗、复发监测和药物选择中有效。基于这些靶标相关生物标志物的生物传感器通过信号转导将被测物质转化为可量化的电信号、光信号等,具有灵敏度高、操作简单、低侵入性等优点。本文综述了液体活检生物标志物在乳腺癌诊断、预后和治疗中的最新进展,比较了基于这些生物标志物的不同生物传感器在乳腺癌诊断中的应用和优势,分析了基于生物传感器的方法的局限性和解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信