Fast vocal-motor tracking of escaping prey in echolocating bats.

IF 4.4 1区 生物学 Q1 BIOLOGY
Ilias Foskolos, Antoniya Hubancheva, Marie Rosenkjær Skalshøi, Kristian Beedholm, Peter Teglberg Madsen, Laura Stidsholt
{"title":"Fast vocal-motor tracking of escaping prey in echolocating bats.","authors":"Ilias Foskolos, Antoniya Hubancheva, Marie Rosenkjær Skalshøi, Kristian Beedholm, Peter Teglberg Madsen, Laura Stidsholt","doi":"10.1186/s12915-024-02106-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Echolocating bats face an intense arms race with insect prey that can detect bat calls and initiate evasive maneuvers. Their high closing speeds and short biosonar ranges leave bats with only a few 100 ms between detection and capture, suggesting a reactive sensory-motor operation that might preclude tracking of escaping prey. Here we test this hypothesis using greater mouse-eared bats (Myotis myotis) as a model species. With high-resolution biologging tags, we recorded bats hunting aerial prey in the wild and we also collected data from trained conspecifics in the laboratory facing simulated prey escapes of various speeds and distances.</p><p><strong>Results: </strong>We show that wild bats employed flexible buzz durations during hunting. In the laboratory, such dynamic vocal responses were driven by moving targets, where faster and longer movements led to longer buzzes. During these buzzes, the bats engaged in acute vocal-motor tracking via increased call intervals within 240 ms of evasive prey maneuvers.</p><p><strong>Conclusions: </strong>Echolocating bats can track evasive prey via a fast vocal-motor feedback loop allowing them to expand their acoustic depth of field. This echo-guided sensory adjustment contributes to the hunting superiority of bats as the most formidable insectivorous predator of the night skies.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"21"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02106-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Echolocating bats face an intense arms race with insect prey that can detect bat calls and initiate evasive maneuvers. Their high closing speeds and short biosonar ranges leave bats with only a few 100 ms between detection and capture, suggesting a reactive sensory-motor operation that might preclude tracking of escaping prey. Here we test this hypothesis using greater mouse-eared bats (Myotis myotis) as a model species. With high-resolution biologging tags, we recorded bats hunting aerial prey in the wild and we also collected data from trained conspecifics in the laboratory facing simulated prey escapes of various speeds and distances.

Results: We show that wild bats employed flexible buzz durations during hunting. In the laboratory, such dynamic vocal responses were driven by moving targets, where faster and longer movements led to longer buzzes. During these buzzes, the bats engaged in acute vocal-motor tracking via increased call intervals within 240 ms of evasive prey maneuvers.

Conclusions: Echolocating bats can track evasive prey via a fast vocal-motor feedback loop allowing them to expand their acoustic depth of field. This echo-guided sensory adjustment contributes to the hunting superiority of bats as the most formidable insectivorous predator of the night skies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信