Reduce electrical overload via threaded Chinese acupuncture in nerve electrical therapy.

IF 18 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Bioactive Materials Pub Date : 2025-01-03 eCollection Date: 2025-04-01 DOI:10.1016/j.bioactmat.2024.12.025
Yupu Liu, Yawei Du, Juan Wang, Longxi Wu, Feng Lin, Wenguo Cui
{"title":"Reduce electrical overload via threaded Chinese acupuncture in nerve electrical therapy.","authors":"Yupu Liu, Yawei Du, Juan Wang, Longxi Wu, Feng Lin, Wenguo Cui","doi":"10.1016/j.bioactmat.2024.12.025","DOIUrl":null,"url":null,"abstract":"<p><p>Bioelectrical stimulation is a powerful technique used to promote tissue regeneration, but it can be hindered by an \"electrical overload\" phenomenon in the core region of stimulation. We develop a threaded microneedle electrode system that protects against \"electrical overload\" by delivering medicinal hydrogel microspheres into the core regions. The threaded needle body is coated with polydopamine and chitosan to enhance the adhesion of microspheres, which are loaded into the threaded grooves, allowing for their stereoscopic release in the core regions. After the electrode is inserted, the microspheres can be delivered three-dimensionally through physical swelling and the shear-thinning effect of chitosan, mitigating the electrical damage. Microspheres are designed to release alkylated vitamin B12 and vitamin E, providing antioxidant and cell protection effects upon <i>in-situ</i> activation, reducing reactive oxygen species (ROS) by 72.8 % and cell death by 59.5 %. In the model of peripheral nerve injury, the electrode system improves the overall antioxidant capacity by 78.5 % and protects the surrounding cells. Additionally, it leads to an improved nerve conduction velocity ratio of 41.9 % and sciatic nerve function index of 12.1 %, indicating enhanced neuroregeneration. The threaded microneedle electrode system offers a promising approach for nerve repair by inhibiting \"electrical overload\", potentially improving outcomes for tissue regeneration.</p>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"46 ","pages":"476-493"},"PeriodicalIF":18.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.bioactmat.2024.12.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bioelectrical stimulation is a powerful technique used to promote tissue regeneration, but it can be hindered by an "electrical overload" phenomenon in the core region of stimulation. We develop a threaded microneedle electrode system that protects against "electrical overload" by delivering medicinal hydrogel microspheres into the core regions. The threaded needle body is coated with polydopamine and chitosan to enhance the adhesion of microspheres, which are loaded into the threaded grooves, allowing for their stereoscopic release in the core regions. After the electrode is inserted, the microspheres can be delivered three-dimensionally through physical swelling and the shear-thinning effect of chitosan, mitigating the electrical damage. Microspheres are designed to release alkylated vitamin B12 and vitamin E, providing antioxidant and cell protection effects upon in-situ activation, reducing reactive oxygen species (ROS) by 72.8 % and cell death by 59.5 %. In the model of peripheral nerve injury, the electrode system improves the overall antioxidant capacity by 78.5 % and protects the surrounding cells. Additionally, it leads to an improved nerve conduction velocity ratio of 41.9 % and sciatic nerve function index of 12.1 %, indicating enhanced neuroregeneration. The threaded microneedle electrode system offers a promising approach for nerve repair by inhibiting "electrical overload", potentially improving outcomes for tissue regeneration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioactive Materials
Bioactive Materials Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍: Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms. The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms. The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials: Bioactive metals and alloys Bioactive inorganics: ceramics, glasses, and carbon-based materials Bioactive polymers and gels Bioactive materials derived from natural sources Bioactive composites These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信