Self-consistent Quantum Linear Response with a Polarizable Embedding Environment.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Peter Reinholdt, Erik Kjellgren, Karl Michael Ziems, Sonia Coriani, Stephan P A Sauer, Jacob Kongsted
{"title":"Self-consistent Quantum Linear Response with a Polarizable Embedding Environment.","authors":"Peter Reinholdt, Erik Kjellgren, Karl Michael Ziems, Sonia Coriani, Stephan P A Sauer, Jacob Kongsted","doi":"10.1021/acs.jpca.4c07534","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum computing presents a promising avenue for solving complex problems, particularly in quantum chemistry, where it could accelerate the computation of molecular properties and excited states. This work focuses on computing excitation energies with hybrid quantum-classical algorithms for near-term quantum devices, combining the quantum linear response (qLR) method with a polarizable embedding (PE) environment. We employ the self-consistent operator manifold of quantum linear response (q-sc-LR) on top of a unitary coupled cluster (UCC) wave function in combination with a Davidson solver. The latter removes the need to construct the entire electronic Hessian, improving computational efficiency when going toward larger molecules. We introduce a new superposition-state-based technique to compute Hessian-vector products and show that this approach is more resilient toward noise than our earlier gradient-based approach. We demonstrate the performance of the PE-UCCSD model on systems such as butadiene and para-nitroaniline in water and find that PE-UCCSD delivers comparable accuracy to classical PE-CCSD methods on such simple closed-shell systems. We also explore the challenges posed by hardware noise and propose simple error mitigation techniques to maintain accurate results on noisy quantum computers.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07534","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computing presents a promising avenue for solving complex problems, particularly in quantum chemistry, where it could accelerate the computation of molecular properties and excited states. This work focuses on computing excitation energies with hybrid quantum-classical algorithms for near-term quantum devices, combining the quantum linear response (qLR) method with a polarizable embedding (PE) environment. We employ the self-consistent operator manifold of quantum linear response (q-sc-LR) on top of a unitary coupled cluster (UCC) wave function in combination with a Davidson solver. The latter removes the need to construct the entire electronic Hessian, improving computational efficiency when going toward larger molecules. We introduce a new superposition-state-based technique to compute Hessian-vector products and show that this approach is more resilient toward noise than our earlier gradient-based approach. We demonstrate the performance of the PE-UCCSD model on systems such as butadiene and para-nitroaniline in water and find that PE-UCCSD delivers comparable accuracy to classical PE-CCSD methods on such simple closed-shell systems. We also explore the challenges posed by hardware noise and propose simple error mitigation techniques to maintain accurate results on noisy quantum computers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信