Computational Study on the Dynamics of a Bis(benzoxazole)-Based Overcrowded Alkene.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Charlotte N Stindt, Taegeun Jo, Jorn D Steen, Ben L Feringa, Stefano Crespi
{"title":"Computational Study on the Dynamics of a Bis(benzoxazole)-Based Overcrowded Alkene.","authors":"Charlotte N Stindt, Taegeun Jo, Jorn D Steen, Ben L Feringa, Stefano Crespi","doi":"10.1021/acs.jpca.4c06773","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding and controlling molecular motions is of pivotal importance for designing molecular machinery and functional molecular systems, capable of performing complex tasks. Herein, we report a comprehensive theoretical study to elucidate the dynamic behavior of a bis(benzoxazole)-based overcrowded alkene displaying several coupled and uncoupled molecular motions. The benzoxazole moieties give rise to 4 different stable conformers that interconvert through single-bond rotations. By performing excited- and ground-state molecular dynamics simulations, DFT calculations, and NMR studies, we found that the photochemical <i>E-Z</i> isomerization of the central double bond of each stable conformer is directional and leads to a mixture of metastable isomers. This transformation is analogous to the classical Feringa-type molecular motors, with the notable difference that, during the photochemical isomerization and the subsequent thermal helix inversion (THI) steps, multiple possible pathways take place that involve single-bond rotations that can be both coupled and uncoupled to the rotation of the naphthyl half of the molecule.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06773","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and controlling molecular motions is of pivotal importance for designing molecular machinery and functional molecular systems, capable of performing complex tasks. Herein, we report a comprehensive theoretical study to elucidate the dynamic behavior of a bis(benzoxazole)-based overcrowded alkene displaying several coupled and uncoupled molecular motions. The benzoxazole moieties give rise to 4 different stable conformers that interconvert through single-bond rotations. By performing excited- and ground-state molecular dynamics simulations, DFT calculations, and NMR studies, we found that the photochemical E-Z isomerization of the central double bond of each stable conformer is directional and leads to a mixture of metastable isomers. This transformation is analogous to the classical Feringa-type molecular motors, with the notable difference that, during the photochemical isomerization and the subsequent thermal helix inversion (THI) steps, multiple possible pathways take place that involve single-bond rotations that can be both coupled and uncoupled to the rotation of the naphthyl half of the molecule.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信