Reactive Oxygen Species-Responsive Gel-Based Microneedle Patches with Antimicrobial and Immunomodulating Properties for Oral Mucosa Disease Treatment.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xuancheng Zhang, Guannan Zhong, Shiyuan Peng, Chuankai Zhang, Bo Li, Zhaoxing Xia, Yujing Zhu, Gang Tao, Rui Cai, Xiaomei Xu
{"title":"Reactive Oxygen Species-Responsive Gel-Based Microneedle Patches with Antimicrobial and Immunomodulating Properties for Oral Mucosa Disease Treatment.","authors":"Xuancheng Zhang, Guannan Zhong, Shiyuan Peng, Chuankai Zhang, Bo Li, Zhaoxing Xia, Yujing Zhu, Gang Tao, Rui Cai, Xiaomei Xu","doi":"10.1021/acsbiomaterials.4c02050","DOIUrl":null,"url":null,"abstract":"<p><p>Oral ulcer wounds are difficult to heal due to bacterial infections, persistent inflammatory responses, and excessive reactive oxygen species (ROS). Therefore, the elimination of bacteria, removal of ROS, and reduction of inflammation are prerequisites for the treatment of mouth ulcer wounds. In this study, oligomeric proanthocyanidins (OPC) and 3-(aminomethyl)phenylboronic acid-modified hyaluronic acid (HP) were used to form polymer gels through dynamic covalent borate bonds. Minocycline hydrochloride (MH) was then loaded into the polymer gel, and a multifunctional MH/OPC-HP microneedles (MNs) with ROS-responsive properties was prepared using a vacuum method. The MH/OPC-HP MNs can rapidly release MH in a diffusive manner and sustainably release OPC in response to ROS. The gel-based MH/OPC-HP MNs extended the retention of OPC in oral ulcers, leading to prolonged ROS scavenging effects. Cytocompatibility and hemocompatibility tests showed that MH/OPC-HP MNs had good biocompatibility. Antibacterial experiments demonstrated that MNs loaded with MH exhibited excellent antibacterial effects. In vitro experiments indicated that MH/OPC-HP MNs could effectively clear ROS, reduce oxidative stress damage, inhibit M1-type macrophage polarization, and induce M2-type polarization. Furthermore, in vivo experiments revealed that MH/OPC-HP MNs could inhibit pro-inflammatory cytokines, promote neovascularization, accelerate epithelial healing of ulcers, and significantly promote healing in a rat model of oral ulcer wound infection. In summary, MH/OPC-HP MNs hold promise as a therapeutic strategy for enhancing the healing of oral ulcer wounds.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Oral ulcer wounds are difficult to heal due to bacterial infections, persistent inflammatory responses, and excessive reactive oxygen species (ROS). Therefore, the elimination of bacteria, removal of ROS, and reduction of inflammation are prerequisites for the treatment of mouth ulcer wounds. In this study, oligomeric proanthocyanidins (OPC) and 3-(aminomethyl)phenylboronic acid-modified hyaluronic acid (HP) were used to form polymer gels through dynamic covalent borate bonds. Minocycline hydrochloride (MH) was then loaded into the polymer gel, and a multifunctional MH/OPC-HP microneedles (MNs) with ROS-responsive properties was prepared using a vacuum method. The MH/OPC-HP MNs can rapidly release MH in a diffusive manner and sustainably release OPC in response to ROS. The gel-based MH/OPC-HP MNs extended the retention of OPC in oral ulcers, leading to prolonged ROS scavenging effects. Cytocompatibility and hemocompatibility tests showed that MH/OPC-HP MNs had good biocompatibility. Antibacterial experiments demonstrated that MNs loaded with MH exhibited excellent antibacterial effects. In vitro experiments indicated that MH/OPC-HP MNs could effectively clear ROS, reduce oxidative stress damage, inhibit M1-type macrophage polarization, and induce M2-type polarization. Furthermore, in vivo experiments revealed that MH/OPC-HP MNs could inhibit pro-inflammatory cytokines, promote neovascularization, accelerate epithelial healing of ulcers, and significantly promote healing in a rat model of oral ulcer wound infection. In summary, MH/OPC-HP MNs hold promise as a therapeutic strategy for enhancing the healing of oral ulcer wounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信