{"title":"A learning-based robust optimization framework for synchromodal freight transportation under uncertainty","authors":"Siyavash Filom, Saiedeh Razavi","doi":"10.1016/j.tre.2025.103967","DOIUrl":null,"url":null,"abstract":"Synchromodal freight transport is characterized by its inherent dynamicity, necessitating the need for optimal decision-making in the presence of uncertainties in the real world. However, most prior research has overlooked the complexities of uncertainty modeling, often relying on assumed probability distributions that may not accurately reflect real-world conditions. This study presents a learning-based robust optimization framework for synchromodal freight transportation to derive data-driven explainable decisions. The study proposes a predict-then-optimize framework, using a combination of the Bayesian Neural Network with uncertainty quantification and dynamic robust optimization modules to solve the shipment matching problem under the synchromodality concept. The integration of prediction and optimization modules is achieved through scenario-based adjustable uncertainty sets. Rather than generating a single optimal solution, this framework produces an optimal policy based on various scenarios, enabling decision-makers to evaluate trade-offs and make informed decisions. The framework is implemented for the Great Lakes region containing nine intermodal terminals using real-world data and the performance is evaluated under various scenarios. In addition, a preprocessing heuristic-based feasible path generation algorithm is developed that helps the framework to maintain linear solution time. Numerical experiments performed on large demand instances (up to 700 shipment requests) demonstrate that the upstream prediction module significantly impacts the downstream optimization module. This effect is primarily due to variations in road travel times across scenarios, which impact transshipment operations, storage, and delay costs.","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"76 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tre.2025.103967","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Synchromodal freight transport is characterized by its inherent dynamicity, necessitating the need for optimal decision-making in the presence of uncertainties in the real world. However, most prior research has overlooked the complexities of uncertainty modeling, often relying on assumed probability distributions that may not accurately reflect real-world conditions. This study presents a learning-based robust optimization framework for synchromodal freight transportation to derive data-driven explainable decisions. The study proposes a predict-then-optimize framework, using a combination of the Bayesian Neural Network with uncertainty quantification and dynamic robust optimization modules to solve the shipment matching problem under the synchromodality concept. The integration of prediction and optimization modules is achieved through scenario-based adjustable uncertainty sets. Rather than generating a single optimal solution, this framework produces an optimal policy based on various scenarios, enabling decision-makers to evaluate trade-offs and make informed decisions. The framework is implemented for the Great Lakes region containing nine intermodal terminals using real-world data and the performance is evaluated under various scenarios. In addition, a preprocessing heuristic-based feasible path generation algorithm is developed that helps the framework to maintain linear solution time. Numerical experiments performed on large demand instances (up to 700 shipment requests) demonstrate that the upstream prediction module significantly impacts the downstream optimization module. This effect is primarily due to variations in road travel times across scenarios, which impact transshipment operations, storage, and delay costs.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.