Probability analysis on tunnels in heterogeneous strata based on borehole data-driven conditional random fields and convolutional neural network

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Gaoyu Ma , Chuan He , Zhengshu He , Rongmin Bai , Guowen Xu
{"title":"Probability analysis on tunnels in heterogeneous strata based on borehole data-driven conditional random fields and convolutional neural network","authors":"Gaoyu Ma ,&nbsp;Chuan He ,&nbsp;Zhengshu He ,&nbsp;Rongmin Bai ,&nbsp;Guowen Xu","doi":"10.1016/j.tust.2025.106402","DOIUrl":null,"url":null,"abstract":"<div><div>Tunnels in heterogeneous strata always encounter spatially varied geological formations, causing asymmetric responses and localized failure in the supporting structure. The homogeneity assumption for surrounding strata, commonly adopted in tunnel design and construction, will neglect the inherent spatial uncertainty of rock mass and lead to the overestimation in tunnel bearing capacity. The conventional stochastic calculations for analyzing tunnel performance in heterogeneous strata also fail to reflect the statistical asymmetry in mechanical behaviors of supporting structure. With the application of mechanized equipment with built-in sensors in drilling and blasting construction, rock parameters at borehole locations can be promptly derived through the drilling data. This systematic on-site monitoring necessitates a rational and stationary extrapolation using rock parameters from the excavation face to the surrounding strata, as the inversion results provide a more precise depiction of the properties of surrounding strata and enable the dynamic design for supporting structure during construction. Therefore, an innovative approach was proposed in this research to conduct probability analysis on the mechanical behaviors of tunnels in heterogeneous strata based on conditional random field models. The statistical characteristics of random variables in these fields were constrained by the derived rock parameters on the excavation face using Hoffman method. The probability distributions of mechanical behaviors were analyzed for tunnels with both symmetric and asymmetric anchor cable systems. In addition, a trained convolutional neural network (CNN) model was implemented to reduce the computational resources required in massive numerical simulations. The tunnel deformation at different circumferential locations can be predicted with an acceptable accuracy and minimal time consumption that significantly facilitated the probabilistic assessments.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"158 ","pages":"Article 106402"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825000409","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tunnels in heterogeneous strata always encounter spatially varied geological formations, causing asymmetric responses and localized failure in the supporting structure. The homogeneity assumption for surrounding strata, commonly adopted in tunnel design and construction, will neglect the inherent spatial uncertainty of rock mass and lead to the overestimation in tunnel bearing capacity. The conventional stochastic calculations for analyzing tunnel performance in heterogeneous strata also fail to reflect the statistical asymmetry in mechanical behaviors of supporting structure. With the application of mechanized equipment with built-in sensors in drilling and blasting construction, rock parameters at borehole locations can be promptly derived through the drilling data. This systematic on-site monitoring necessitates a rational and stationary extrapolation using rock parameters from the excavation face to the surrounding strata, as the inversion results provide a more precise depiction of the properties of surrounding strata and enable the dynamic design for supporting structure during construction. Therefore, an innovative approach was proposed in this research to conduct probability analysis on the mechanical behaviors of tunnels in heterogeneous strata based on conditional random field models. The statistical characteristics of random variables in these fields were constrained by the derived rock parameters on the excavation face using Hoffman method. The probability distributions of mechanical behaviors were analyzed for tunnels with both symmetric and asymmetric anchor cable systems. In addition, a trained convolutional neural network (CNN) model was implemented to reduce the computational resources required in massive numerical simulations. The tunnel deformation at different circumferential locations can be predicted with an acceptable accuracy and minimal time consumption that significantly facilitated the probabilistic assessments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信