{"title":"Tunnel crack assessment using simultaneous localization and mapping (SLAM) and deep learning segmentation","authors":"Huitong Xu, Meng Wang, Cheng Liu, Yongchao Guo, Zihan Gao, Changqing Xie","doi":"10.1016/j.autcon.2025.105977","DOIUrl":null,"url":null,"abstract":"Artificial intelligence algorithms and multi-sensor technologies are advancing tunnel crack detection. However, image-based detection methods fail to account for tunnel section curvature, limiting their ability to represent the spatial geometry of cracks. To address these problems, this paper presents a tunnel crack assessment method combining simultaneous localization and mapping (SLAM) with deep learning-based segmentation. The SLAM algorithm reconstructs the tunnel point cloud map, and a two-dimensional (2D) convex hull point cloud unfolding with a cloth simulation filter (CSF) algorithm is applied for denoising. A deep learning segmentation model is used to segment the tunnel cracks. The cracks are projected into a three-dimensional (3D) point cloud map, and the crack length and spatial location are calculated. Field tests demonstrate that the method reduces tunnel reconstruction time to 27 s (a 99 % time saving), with a maximum radius error of 0.03 m and accurate 3D crack projections.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"2 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2025.105977","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence algorithms and multi-sensor technologies are advancing tunnel crack detection. However, image-based detection methods fail to account for tunnel section curvature, limiting their ability to represent the spatial geometry of cracks. To address these problems, this paper presents a tunnel crack assessment method combining simultaneous localization and mapping (SLAM) with deep learning-based segmentation. The SLAM algorithm reconstructs the tunnel point cloud map, and a two-dimensional (2D) convex hull point cloud unfolding with a cloth simulation filter (CSF) algorithm is applied for denoising. A deep learning segmentation model is used to segment the tunnel cracks. The cracks are projected into a three-dimensional (3D) point cloud map, and the crack length and spatial location are calculated. Field tests demonstrate that the method reduces tunnel reconstruction time to 27 s (a 99 % time saving), with a maximum radius error of 0.03 m and accurate 3D crack projections.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.