Enhancing convergence speed and accuracy of virtual field optimization method for microseismic source location in tunnels

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Jian He, Huailiang Li, Binhong Li, Nuwen Xu, Junnan Wen, Yuedong Li
{"title":"Enhancing convergence speed and accuracy of virtual field optimization method for microseismic source location in tunnels","authors":"Jian He, Huailiang Li, Binhong Li, Nuwen Xu, Junnan Wen, Yuedong Li","doi":"10.1016/j.tust.2025.106366","DOIUrl":null,"url":null,"abstract":"Accurate and rapid microseismic source location is the foundation for tunnel rockburst warning. Here, we present a novel location strategy that employs an improved mayfly algorithm (IMA) to enhance the convergence speed and accuracy of the virtual field optimization method (VFOM) for tunnel microseismic events. By optimizing the initial position of the mayfly population and the moving velocity of mayfly personals, we develop an IMA with superior convergence speed in searching for source locations. The proposed method utilizes paired microseismic receivers in the tunnel monitoring array to create hyperbolic surfaces. Then, the IMA is employed to rapidly and accurately determine the intersection point of all hyperbolic surfaces, defining it as the microseismic source location. We compare the IMA-VFOM with different error levels in seismic wave velocity or arrival time against other traditional location approaches based on travel time differences. The results confirm that the IMA-VFOM’s convergence speed is, on average, more than 4 times that of the MA-VFOM algorithm. Compared to conventional methods, the IMA-VFOM method demonstrates higher location accuracy and stability. The average location error of the proposed method is <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>0043</mml:mn><mml:mspace width=\"1em\"></mml:mspace><mml:mi mathvariant=\"normal\">m</mml:mi></mml:mrow></mml:math> when applied to real rockburst microseismic events in tunnels.","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"67 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tust.2025.106366","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and rapid microseismic source location is the foundation for tunnel rockburst warning. Here, we present a novel location strategy that employs an improved mayfly algorithm (IMA) to enhance the convergence speed and accuracy of the virtual field optimization method (VFOM) for tunnel microseismic events. By optimizing the initial position of the mayfly population and the moving velocity of mayfly personals, we develop an IMA with superior convergence speed in searching for source locations. The proposed method utilizes paired microseismic receivers in the tunnel monitoring array to create hyperbolic surfaces. Then, the IMA is employed to rapidly and accurately determine the intersection point of all hyperbolic surfaces, defining it as the microseismic source location. We compare the IMA-VFOM with different error levels in seismic wave velocity or arrival time against other traditional location approaches based on travel time differences. The results confirm that the IMA-VFOM’s convergence speed is, on average, more than 4 times that of the MA-VFOM algorithm. Compared to conventional methods, the IMA-VFOM method demonstrates higher location accuracy and stability. The average location error of the proposed method is 4.0043m when applied to real rockburst microseismic events in tunnels.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信