Time-dependent seismic fragility analysis of subway station structure subjected to chloride-induced corrosion

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Zilan Zhong, Jiaxi Guo, Bu Zhang, Xiuli Du
{"title":"Time-dependent seismic fragility analysis of subway station structure subjected to chloride-induced corrosion","authors":"Zilan Zhong,&nbsp;Jiaxi Guo,&nbsp;Bu Zhang,&nbsp;Xiuli Du","doi":"10.1016/j.tust.2025.106376","DOIUrl":null,"url":null,"abstract":"<div><div>Subway station structures near coast are at risk of corrosion caused by chloride, resulting in material and structural component deterioration over time and impacting overall performance during earthquakes. This study proposes a numerical framework for the time-dependent seismic fragility analysis of subway station structures, considering chloride-induced corrosion, based on the IDA method. This study utilizes finite element simulations of typical subway station structures in Qingdao, Shandong, China, focusing on nonlinear dynamic interactions between soil and structure, as well as the impact of chloride-induced corrosion on aging effects. The time-dependent damage states within subway station structures are determined through a nonlinear static pushover analysis. Subsequently, the IDA method is employed to generate time-dependent seismic fragility curves and surfaces specific to subway station structures. The numerical results indicate that the impact of chloride-induced corrosion on the subway station structure cannot be ignored. In the corrosion environment, the seismic performance assessment of subway station structures must take into account time-dependent damage states resulting from the degradation of material properties and the reduction in seismic capacity. The probability of a subway station structure exceeding various damage states monotonically increases during its service life. The subway station structure primarily suffers minor to moderate damage under the ground motion with a return period of 2450 or 10000 years, as it reaches its design service life.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"158 ","pages":"Article 106376"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825000148","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Subway station structures near coast are at risk of corrosion caused by chloride, resulting in material and structural component deterioration over time and impacting overall performance during earthquakes. This study proposes a numerical framework for the time-dependent seismic fragility analysis of subway station structures, considering chloride-induced corrosion, based on the IDA method. This study utilizes finite element simulations of typical subway station structures in Qingdao, Shandong, China, focusing on nonlinear dynamic interactions between soil and structure, as well as the impact of chloride-induced corrosion on aging effects. The time-dependent damage states within subway station structures are determined through a nonlinear static pushover analysis. Subsequently, the IDA method is employed to generate time-dependent seismic fragility curves and surfaces specific to subway station structures. The numerical results indicate that the impact of chloride-induced corrosion on the subway station structure cannot be ignored. In the corrosion environment, the seismic performance assessment of subway station structures must take into account time-dependent damage states resulting from the degradation of material properties and the reduction in seismic capacity. The probability of a subway station structure exceeding various damage states monotonically increases during its service life. The subway station structure primarily suffers minor to moderate damage under the ground motion with a return period of 2450 or 10000 years, as it reaches its design service life.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信