Study on the deformation of existing tunnel under the combined effect of pit excavation and dewatering based on the Kerr foundation model

IF 6.7 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Meng Fei, Qiao Shifan
{"title":"Study on the deformation of existing tunnel under the combined effect of pit excavation and dewatering based on the Kerr foundation model","authors":"Meng Fei, Qiao Shifan","doi":"10.1016/j.tust.2025.106382","DOIUrl":null,"url":null,"abstract":"There is a significant progression towards the trend of significant depth and extensive scale in foundation pit construction, where the excavation range is large and dewatering measures are usually required. To overcome the shortcomings associated with the complexity of the 3D numerical analysis model and the long period of on-site measurement in existing studies, a two-stage analysis method is proposed to consider the impacts on existing tunnels under the combined effects of pit excavation and dewatering. The first step involves calculating the additional stress imposed on the existing tunnel under the construction of pit bottom, pit side, and dewatering. Secondly, a differential equation describing the deformation effects on the existing tunnel is established based on the Kerr foundation model. Finally, the control equation is solved using the Galerkin method. Three engineering cases with different locations and tunnel parameters are selected to validate the proposed method. The effects of various factors on the deformation of the existing tunnel under the influence of pit excavation and dewatering are analyzed. Subsequently, an orthogonal experiment is designed to analyze the significant factors influencing the deformation of the existing tunnel and their prioritization, and an optimal parameter combination for controlling the existing tunnel deformation is obtained.","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"8 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tust.2025.106382","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

There is a significant progression towards the trend of significant depth and extensive scale in foundation pit construction, where the excavation range is large and dewatering measures are usually required. To overcome the shortcomings associated with the complexity of the 3D numerical analysis model and the long period of on-site measurement in existing studies, a two-stage analysis method is proposed to consider the impacts on existing tunnels under the combined effects of pit excavation and dewatering. The first step involves calculating the additional stress imposed on the existing tunnel under the construction of pit bottom, pit side, and dewatering. Secondly, a differential equation describing the deformation effects on the existing tunnel is established based on the Kerr foundation model. Finally, the control equation is solved using the Galerkin method. Three engineering cases with different locations and tunnel parameters are selected to validate the proposed method. The effects of various factors on the deformation of the existing tunnel under the influence of pit excavation and dewatering are analyzed. Subsequently, an orthogonal experiment is designed to analyze the significant factors influencing the deformation of the existing tunnel and their prioritization, and an optimal parameter combination for controlling the existing tunnel deformation is obtained.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信