{"title":"Study on the deformation of existing tunnel under the combined effect of pit excavation and dewatering based on the Kerr foundation model","authors":"Meng Fei, Qiao Shifan","doi":"10.1016/j.tust.2025.106382","DOIUrl":null,"url":null,"abstract":"There is a significant progression towards the trend of significant depth and extensive scale in foundation pit construction, where the excavation range is large and dewatering measures are usually required. To overcome the shortcomings associated with the complexity of the 3D numerical analysis model and the long period of on-site measurement in existing studies, a two-stage analysis method is proposed to consider the impacts on existing tunnels under the combined effects of pit excavation and dewatering. The first step involves calculating the additional stress imposed on the existing tunnel under the construction of pit bottom, pit side, and dewatering. Secondly, a differential equation describing the deformation effects on the existing tunnel is established based on the Kerr foundation model. Finally, the control equation is solved using the Galerkin method. Three engineering cases with different locations and tunnel parameters are selected to validate the proposed method. The effects of various factors on the deformation of the existing tunnel under the influence of pit excavation and dewatering are analyzed. Subsequently, an orthogonal experiment is designed to analyze the significant factors influencing the deformation of the existing tunnel and their prioritization, and an optimal parameter combination for controlling the existing tunnel deformation is obtained.","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"8 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tust.2025.106382","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is a significant progression towards the trend of significant depth and extensive scale in foundation pit construction, where the excavation range is large and dewatering measures are usually required. To overcome the shortcomings associated with the complexity of the 3D numerical analysis model and the long period of on-site measurement in existing studies, a two-stage analysis method is proposed to consider the impacts on existing tunnels under the combined effects of pit excavation and dewatering. The first step involves calculating the additional stress imposed on the existing tunnel under the construction of pit bottom, pit side, and dewatering. Secondly, a differential equation describing the deformation effects on the existing tunnel is established based on the Kerr foundation model. Finally, the control equation is solved using the Galerkin method. Three engineering cases with different locations and tunnel parameters are selected to validate the proposed method. The effects of various factors on the deformation of the existing tunnel under the influence of pit excavation and dewatering are analyzed. Subsequently, an orthogonal experiment is designed to analyze the significant factors influencing the deformation of the existing tunnel and their prioritization, and an optimal parameter combination for controlling the existing tunnel deformation is obtained.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.