Fuzzy Galaxies or Cirrus? Decomposition of Galactic Cirrus in Deep Wide-field Images

Qing Liu, 青 刘, Roberto Abraham, Peter G. Martin, William P. Bowman, Pieter van Dokkum, Shany Danieli, Ekta Patel, Steven R. Janssens, Zili Shen, Seery Chen, Ananthan Karunakaran, Michael A. Keim, Deborah Lokhorst, Imad Pasha and Douglas L. Welch
{"title":"Fuzzy Galaxies or Cirrus? Decomposition of Galactic Cirrus in Deep Wide-field Images","authors":"Qing Liu, 青 刘, Roberto Abraham, Peter G. Martin, William P. Bowman, Pieter van Dokkum, Shany Danieli, Ekta Patel, Steven R. Janssens, Zili Shen, Seery Chen, Ananthan Karunakaran, Michael A. Keim, Deborah Lokhorst, Imad Pasha and Douglas L. Welch","doi":"10.3847/1538-4357/ad9b25","DOIUrl":null,"url":null,"abstract":"Diffuse Galactic cirrus, or diffuse Galactic light (DGL), can be a prominent component in the background of deep wide-field imaging surveys. The DGL provides unique insights into the physical and radiative properties of dust grains in our Milky Way, and it also serves as a contaminant on deep images, obscuring the detection of background sources such as low surface brightness galaxies. However, it is challenging to disentangle the DGL from other components of the night sky. In this paper, we present a technique for the photometric characterization of Galactic cirrus based on (1) extraction of its filamentary or patchy morphology and (2) incorporation of color constraints obtained from Planck thermal dust models. Our decomposition method is illustrated using a ~10 deg2 imaging data set obtained by the Dragonfly Telephoto Array, and its performance is explored using various metrics that characterize the flatness of the sky background. As a concrete application of the technique, we show how removal of cirrus allows low surface brightness galaxies to be identified on cirrus-rich images. We also show how modeling the cirrus in this way allows optical DGL intensities to be determined with high radiometric precision.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad9b25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse Galactic cirrus, or diffuse Galactic light (DGL), can be a prominent component in the background of deep wide-field imaging surveys. The DGL provides unique insights into the physical and radiative properties of dust grains in our Milky Way, and it also serves as a contaminant on deep images, obscuring the detection of background sources such as low surface brightness galaxies. However, it is challenging to disentangle the DGL from other components of the night sky. In this paper, we present a technique for the photometric characterization of Galactic cirrus based on (1) extraction of its filamentary or patchy morphology and (2) incorporation of color constraints obtained from Planck thermal dust models. Our decomposition method is illustrated using a ~10 deg2 imaging data set obtained by the Dragonfly Telephoto Array, and its performance is explored using various metrics that characterize the flatness of the sky background. As a concrete application of the technique, we show how removal of cirrus allows low surface brightness galaxies to be identified on cirrus-rich images. We also show how modeling the cirrus in this way allows optical DGL intensities to be determined with high radiometric precision.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信