{"title":"Seasonal Mineralisation of Organic Matter in Alpine Soils and Responses to Global Warming: An In Vitro Approach","authors":"Nicolas Bonfanti, Jean‐Christophe Clement, Annie Millery‐Vigues, Tamara Münkemüller, Yves Perrette, Jérôme Poulenard","doi":"10.1111/ejss.70050","DOIUrl":null,"url":null,"abstract":"Mountains are particularly vulnerable to climate change, as they are warming at a rate that exceeds the global average, significantly impacting cold‐adapted ecosystems. In these environments, soil organic matter (SOM) stocks are often considerably larger than at lower elevations. These stocks are therefore highly susceptible to global warming and the associated risk of greenhouse gas (GHG) (CO₂, CH₄, N₂O) emissions driven by temperature‐induced increases in SOM mineralisation. In order to quantify these emissions and the change of mineralisation rates under warming, it is necessary to gain an understanding of the annual mineralisation balance. We investigated how warming impacts the duration and intensity of mineralisation in different seasons. The main aim of this study is to quantify alpine SOM mineralisation rates and GHG production under a range of seasonal conditions, including those associated with warming. An in vitro approach was employed to expose alpine topsoils (0–10 cm) to the conditions of key seasonal periods: snow cover, growing season and rainfall/snowmelt. This was achieved by experimentally varying temperature and inflow of precipitation water. Additionally, the soil samples were subjected to a temperature increase of 4°C. The short‐term responses of carbon (C), nitrogen (N) and phosphorus (P) mineralisation and GHG production were monitored. The results demonstrated that alpine soil respiration rates exhibited a twofold increase with a 4°C warming, while the relative proportion of labile SOM demonstrated a decline with rising temperatures. Water saturation from simulated rain and snowmelt played a crucial role in organic matter mineralisation and increased the mineralisation of carbon (+12% to +53%), nitrogen (+20% to +80% of net ammonification) and phosphorus (+50% of net phosphate production). This suggests that nutrients present in the snowpack or the rain were added to the soil. In contrast, soil–water saturation decreased net nitrate production by between 10% and 90%. The results of this study highlight the potential for alpine soil warming to release labile SOM and demonstrate the influence of the snow regime on nutrient and carbon fluxes.","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"138 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ejss.70050","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Mountains are particularly vulnerable to climate change, as they are warming at a rate that exceeds the global average, significantly impacting cold‐adapted ecosystems. In these environments, soil organic matter (SOM) stocks are often considerably larger than at lower elevations. These stocks are therefore highly susceptible to global warming and the associated risk of greenhouse gas (GHG) (CO₂, CH₄, N₂O) emissions driven by temperature‐induced increases in SOM mineralisation. In order to quantify these emissions and the change of mineralisation rates under warming, it is necessary to gain an understanding of the annual mineralisation balance. We investigated how warming impacts the duration and intensity of mineralisation in different seasons. The main aim of this study is to quantify alpine SOM mineralisation rates and GHG production under a range of seasonal conditions, including those associated with warming. An in vitro approach was employed to expose alpine topsoils (0–10 cm) to the conditions of key seasonal periods: snow cover, growing season and rainfall/snowmelt. This was achieved by experimentally varying temperature and inflow of precipitation water. Additionally, the soil samples were subjected to a temperature increase of 4°C. The short‐term responses of carbon (C), nitrogen (N) and phosphorus (P) mineralisation and GHG production were monitored. The results demonstrated that alpine soil respiration rates exhibited a twofold increase with a 4°C warming, while the relative proportion of labile SOM demonstrated a decline with rising temperatures. Water saturation from simulated rain and snowmelt played a crucial role in organic matter mineralisation and increased the mineralisation of carbon (+12% to +53%), nitrogen (+20% to +80% of net ammonification) and phosphorus (+50% of net phosphate production). This suggests that nutrients present in the snowpack or the rain were added to the soil. In contrast, soil–water saturation decreased net nitrate production by between 10% and 90%. The results of this study highlight the potential for alpine soil warming to release labile SOM and demonstrate the influence of the snow regime on nutrient and carbon fluxes.
期刊介绍:
The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.