Wanxin Peng, Sen Lin, Feng Yang, Ya Cao, Ming Xiang, Tong Wu
{"title":"Water Droplet Templating Technique to Design Three-Dimensionally Ordered Porous Structures of Polymer Film","authors":"Wanxin Peng, Sen Lin, Feng Yang, Ya Cao, Ming Xiang, Tong Wu","doi":"10.1021/acsmacrolett.4c00753","DOIUrl":null,"url":null,"abstract":"We developed a unique water droplet templating method to fabricate polymer films with three-dimensionally ordered porous structures. This technique is based on a polymer/solvent/H<sub>2</sub>O ternary system, and the key is to choose a volatile and hydrophobic solvent that is slightly miscible with H<sub>2</sub>O. With the fast evaporation of the solvent, water droplets separate from the casting solution and condense from the air to act as pore templates inside the film and on the surface, respectively. According to this law, nitrocellulose (NC) films were produced from the NC/methyl acetate (MA)/H<sub>2</sub>O system in which the solubility of H<sub>2</sub>O in MA is 8.1 wt %. By modulating the solution concentration (density) from 3% to 9% NC, the distribution of separated water droplets (pores) in the solution can be flexibly controlled from sinking to floating. On the other hand, substantial ordered honeycomb pores, originated from condensed water droplets, distribute uniformly on the surface of NC films. This water droplet templating technique can be extensively applied in various polymer films, providing an effective pathway to designing polymer films with a desirable porous structure and diverse functionalities.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"108 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a unique water droplet templating method to fabricate polymer films with three-dimensionally ordered porous structures. This technique is based on a polymer/solvent/H2O ternary system, and the key is to choose a volatile and hydrophobic solvent that is slightly miscible with H2O. With the fast evaporation of the solvent, water droplets separate from the casting solution and condense from the air to act as pore templates inside the film and on the surface, respectively. According to this law, nitrocellulose (NC) films were produced from the NC/methyl acetate (MA)/H2O system in which the solubility of H2O in MA is 8.1 wt %. By modulating the solution concentration (density) from 3% to 9% NC, the distribution of separated water droplets (pores) in the solution can be flexibly controlled from sinking to floating. On the other hand, substantial ordered honeycomb pores, originated from condensed water droplets, distribute uniformly on the surface of NC films. This water droplet templating technique can be extensively applied in various polymer films, providing an effective pathway to designing polymer films with a desirable porous structure and diverse functionalities.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.