Hybrid solvating electrolytes for practical sodium-metal batteries

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-03-19 DOI:10.1016/j.joule.2024.101811
Weiyin Chen , Jin-Sung Park , Choah Kwon , Christian O. Plaza-Rivera , Chia-Wei Hsu , Jason Khoi Phong , Landon James Kilgallon , Daniel Wang , Tao Dai , So Yeon Kim , Guanzhou Zhu , Yifan Gao , Zhichu Ren , Zhen Zhang , Hyojun Lim , Yang Shao-Horn , Jeremiah A. Johnson , Ju Li
{"title":"Hybrid solvating electrolytes for practical sodium-metal batteries","authors":"Weiyin Chen ,&nbsp;Jin-Sung Park ,&nbsp;Choah Kwon ,&nbsp;Christian O. Plaza-Rivera ,&nbsp;Chia-Wei Hsu ,&nbsp;Jason Khoi Phong ,&nbsp;Landon James Kilgallon ,&nbsp;Daniel Wang ,&nbsp;Tao Dai ,&nbsp;So Yeon Kim ,&nbsp;Guanzhou Zhu ,&nbsp;Yifan Gao ,&nbsp;Zhichu Ren ,&nbsp;Zhen Zhang ,&nbsp;Hyojun Lim ,&nbsp;Yang Shao-Horn ,&nbsp;Jeremiah A. Johnson ,&nbsp;Ju Li","doi":"10.1016/j.joule.2024.101811","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium-metal batteries could be competitive against Li-metal batteries, but their applications depend on the stability of electrolytes against sodium-metal anodes and cathodes simultaneously. Here, we propose hybrid solvating electrolytes (HSEs), composed of both strongly and weakly solvating solvents of sodium salts, to tune the solubility, solvation structure, and electrochemical decomposition properties. Fifty HSEs are prepared using the pre-screened candidate molecules, validating the mixture selection requirements and correlations between salt/solvent types and their mixture-dependent performance, including oxidative stability, Coulombic efficiency, and cycling overpotential. A model hybrid solvent formed by mixing weakly solvating N,N-dimethyltrifluoromethane sulfonamide (DMTMSA) with strongly solvating tetrahydrofuran (THF) demonstrates strong beyond-rule-of-mixture effects, showing extraordinarily stable cycling performance against Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> and Na<sub>0.44</sub>MnO<sub>2</sub> cathodes and Na-metal anode. Spectroscopic analysis and molecular dynamics simulations reflect the corresponding change in ion-dipole interaction and solvation structures. The strong-weak hybrid solvating principle for electrolyte design enables practical alkali-metal batteries.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 3","pages":"Article 101811"},"PeriodicalIF":38.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124005476","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-metal batteries could be competitive against Li-metal batteries, but their applications depend on the stability of electrolytes against sodium-metal anodes and cathodes simultaneously. Here, we propose hybrid solvating electrolytes (HSEs), composed of both strongly and weakly solvating solvents of sodium salts, to tune the solubility, solvation structure, and electrochemical decomposition properties. Fifty HSEs are prepared using the pre-screened candidate molecules, validating the mixture selection requirements and correlations between salt/solvent types and their mixture-dependent performance, including oxidative stability, Coulombic efficiency, and cycling overpotential. A model hybrid solvent formed by mixing weakly solvating N,N-dimethyltrifluoromethane sulfonamide (DMTMSA) with strongly solvating tetrahydrofuran (THF) demonstrates strong beyond-rule-of-mixture effects, showing extraordinarily stable cycling performance against Na3V2(PO4)3 and Na0.44MnO2 cathodes and Na-metal anode. Spectroscopic analysis and molecular dynamics simulations reflect the corresponding change in ion-dipole interaction and solvation structures. The strong-weak hybrid solvating principle for electrolyte design enables practical alkali-metal batteries.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信