Manipulating Phase and Defect Distribution of Quasi-2D Perovskites via a Synergistic Strategy for Enhancing the Performance of Blue Light-Emitting Diodes
IF 8.2 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Na Jiang, Guoquan Ma, Mingyi Zhu, Dandan Song, Bo Qiao, Zhiqin Liang, Zheng Xu, Suling Zhao
{"title":"Manipulating Phase and Defect Distribution of Quasi-2D Perovskites via a Synergistic Strategy for Enhancing the Performance of Blue Light-Emitting Diodes","authors":"Na Jiang, Guoquan Ma, Mingyi Zhu, Dandan Song, Bo Qiao, Zhiqin Liang, Zheng Xu, Suling Zhao","doi":"10.1021/acsami.4c21188","DOIUrl":null,"url":null,"abstract":"Quasi-two-dimensional (quasi-2D) mixed-halide perovskites are a requisite for their applications in highly efficient blue perovskite light-emitting diodes (PeLEDs) owing to their strong quantum confinement effect and high exciton binding energy. The pace of quasi-2D blue PeLEDs is hindered primarily by two factors: challenges in precisely managing the phase distribution and defect-mediated nonradiative recombination losses. Herein, we utilize 2,2-diphenylethylamine (DPEA<sup>+</sup>) with bulky steric hindrance to disturb the assembly process of a slender spacer host cation, 4-fluorophenylethylammonium (<i>p</i>-F-PEA<sup>+</sup>), enhancing phase distribution management in quasi-2D PeLEDs. The DPEA<sup>+</sup> not only inhibits the small-<i>n</i> phase but also strengthens carrier transport and alleviates exciton quenching. In addition, dual additives─formamidine acetate (FAoAc) and guanidine thiocyanate (GASCN)─were incorporated to assist phase tailoring and passivation of remaining defects in the perovskite films. The C═O and SCN<sup>–</sup> groups can coordinate with Pb<sup>2+</sup> to suppress the charge trap density and nonradiative recombination. As a result of employing a synergetic strategy for comprehensive phase distribution regulation and defect passivation, the optimized device achieves blue emission at 479 nm with a 5× improvement in external quantum efficiency (EQE) and a 13× increase in device operating stability. This synergetic strategy paves a simple route for phase management and defect passivation toward high-performance blue-emission PeLEDs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"48 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21188","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-two-dimensional (quasi-2D) mixed-halide perovskites are a requisite for their applications in highly efficient blue perovskite light-emitting diodes (PeLEDs) owing to their strong quantum confinement effect and high exciton binding energy. The pace of quasi-2D blue PeLEDs is hindered primarily by two factors: challenges in precisely managing the phase distribution and defect-mediated nonradiative recombination losses. Herein, we utilize 2,2-diphenylethylamine (DPEA+) with bulky steric hindrance to disturb the assembly process of a slender spacer host cation, 4-fluorophenylethylammonium (p-F-PEA+), enhancing phase distribution management in quasi-2D PeLEDs. The DPEA+ not only inhibits the small-n phase but also strengthens carrier transport and alleviates exciton quenching. In addition, dual additives─formamidine acetate (FAoAc) and guanidine thiocyanate (GASCN)─were incorporated to assist phase tailoring and passivation of remaining defects in the perovskite films. The C═O and SCN– groups can coordinate with Pb2+ to suppress the charge trap density and nonradiative recombination. As a result of employing a synergetic strategy for comprehensive phase distribution regulation and defect passivation, the optimized device achieves blue emission at 479 nm with a 5× improvement in external quantum efficiency (EQE) and a 13× increase in device operating stability. This synergetic strategy paves a simple route for phase management and defect passivation toward high-performance blue-emission PeLEDs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.