{"title":"Stability Study of Anticoagulant Hydrogel Coatings Toward Long-Term Cardiovascular Devices","authors":"Yifeng Chen, Yiduo Chen, Wenzhong Cao, Jing Wang, Peng Zhang, Jian Ji","doi":"10.1021/acs.langmuir.4c04364","DOIUrl":null,"url":null,"abstract":"Implantable cardiovascular devices have revolutionized the treatment of cardiovascular diseases, yet their long-term functionality without causing thrombosis is a persistent challenge. Although the surface modification of anticoagulant coating has greatly improved the biocompatibility of the devices, its long-term stability in complex physiological environments still remains questionable. Herein, the stability of three anticoagulant hydrogel coatings, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(sodium 2-acryloyl-2-methylpropanesulfonate) (PAMPS), and poly(4-styrenesulfonate sodium) (PSS), is studied. The fabrication of these coatings onto device surfaces is validated by using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. <i>In vitro</i> anticoagulation assays confirm the coatings’ significant anticoagulant effects. Among all three coatings, the PSS coating demonstrated superior chemical and mechanical stability in the comprehensive tests, showing great potential for improving the long-term anticoagulant performance of implantable cardiovascular devices.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"38 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04364","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Implantable cardiovascular devices have revolutionized the treatment of cardiovascular diseases, yet their long-term functionality without causing thrombosis is a persistent challenge. Although the surface modification of anticoagulant coating has greatly improved the biocompatibility of the devices, its long-term stability in complex physiological environments still remains questionable. Herein, the stability of three anticoagulant hydrogel coatings, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(sodium 2-acryloyl-2-methylpropanesulfonate) (PAMPS), and poly(4-styrenesulfonate sodium) (PSS), is studied. The fabrication of these coatings onto device surfaces is validated by using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. In vitro anticoagulation assays confirm the coatings’ significant anticoagulant effects. Among all three coatings, the PSS coating demonstrated superior chemical and mechanical stability in the comprehensive tests, showing great potential for improving the long-term anticoagulant performance of implantable cardiovascular devices.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).