{"title":"Interlayer reconstruction phase transition in van der Waals materials","authors":"Junwei Zhang, Laiyuan Wang, Jingtao Lü, Zhe Wang, Huan Wu, Guilin Zhu, Nan Wang, Fei Xue, Xue Zeng, Liu Zhu, Yang Hu, Xia Deng, Chaoshuai Guan, Chen Yang, Zhaoyang Lin, Peiqi Wang, Boxuan Zhou, Jing Lü, Wenguang Zhu, Xixiang Zhang, Yu Huang, Wei Huang, Yong Peng, Xiangfeng Duan","doi":"10.1038/s41563-024-02082-w","DOIUrl":null,"url":null,"abstract":"<p>Van der Waals materials display rich structural polymorphs with distinct physical properties. An atomistic understanding of the phase-transition dynamics, propagation pathway and associated evolution of physical properties is essential for capturing their potential in practical technologies. However, direct visualization of the rapid phase-transition process is fundamentally challenging due to the inherent trade-offs among atomic resolution, field of view and imaging frame rate. Here we exploit a controllable current-driven phase transition and utilize in situ scanning transmission electron microscopy to visualize dynamic atomic rearrangements during the 2H-α to 2H-β transition in layered In<sub>2</sub>Se<sub>3</sub>. We identify a unique intralayer-splitting (unzipping) and interlayer-reconstruction (zipping) pathway, driven by an energy-cascading mechanism through which bond formation across the van der Waals gap facilitates bond cleavage in the covalent layers. We also observe current-direction-dependent asymmetric phase-transition propagation and attribute it to a temperature profile induced by the Peltier effect at the heterophase interface. These findings provide insights that are essential for designing tailored structural phase transitions in advanced technologies.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"34 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02082-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Van der Waals materials display rich structural polymorphs with distinct physical properties. An atomistic understanding of the phase-transition dynamics, propagation pathway and associated evolution of physical properties is essential for capturing their potential in practical technologies. However, direct visualization of the rapid phase-transition process is fundamentally challenging due to the inherent trade-offs among atomic resolution, field of view and imaging frame rate. Here we exploit a controllable current-driven phase transition and utilize in situ scanning transmission electron microscopy to visualize dynamic atomic rearrangements during the 2H-α to 2H-β transition in layered In2Se3. We identify a unique intralayer-splitting (unzipping) and interlayer-reconstruction (zipping) pathway, driven by an energy-cascading mechanism through which bond formation across the van der Waals gap facilitates bond cleavage in the covalent layers. We also observe current-direction-dependent asymmetric phase-transition propagation and attribute it to a temperature profile induced by the Peltier effect at the heterophase interface. These findings provide insights that are essential for designing tailored structural phase transitions in advanced technologies.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.