{"title":"Quasi-Planar Heterojunction: Enhancing Stability and Practicality in Organic Photovoltaics","authors":"Yiwu Zhu, Feng He","doi":"10.1021/acsenergylett.4c03046","DOIUrl":null,"url":null,"abstract":"With the rapid advancements in the power conversion efficiency (PCE) of organic photovoltaic (OPV) devices, their stability has garnered increasing attention. While material innovation has played a critical role in recent years, the Q-PHJ (quasi-planar heterojunction) architecture offers an alternative approach to device optimization. This article aims to explain how the introduction of the Q-PHJ architecture can mitigate degradation under various conditions without compromising device performance. It begins by illustrating the fundamental mechanisms responsible for the degradation of OPV devices. Following this, the advantages of the Q-PHJ device and the mechanism are explained by introducing our recent work as well as highlighting other researchers’ work in this field. Different aspects and factors such as morphology, the ternary strategy, additive engineering, and vertical distribution were analyzed. The role of material innovation is also discussed. In the end, the feasibility and challenges of applying bilayer and bilayer-dominated devices to industrial manufacturing are analyzed in detail.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"38 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03046","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancements in the power conversion efficiency (PCE) of organic photovoltaic (OPV) devices, their stability has garnered increasing attention. While material innovation has played a critical role in recent years, the Q-PHJ (quasi-planar heterojunction) architecture offers an alternative approach to device optimization. This article aims to explain how the introduction of the Q-PHJ architecture can mitigate degradation under various conditions without compromising device performance. It begins by illustrating the fundamental mechanisms responsible for the degradation of OPV devices. Following this, the advantages of the Q-PHJ device and the mechanism are explained by introducing our recent work as well as highlighting other researchers’ work in this field. Different aspects and factors such as morphology, the ternary strategy, additive engineering, and vertical distribution were analyzed. The role of material innovation is also discussed. In the end, the feasibility and challenges of applying bilayer and bilayer-dominated devices to industrial manufacturing are analyzed in detail.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.