Decadal persistence of grassland soil organic matter derived from litter and pyrogenic inputs

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Sam J. Leuthold, Jennifer L. Soong, Rebecca J. Even, M. Francesca Cotrufo
{"title":"Decadal persistence of grassland soil organic matter derived from litter and pyrogenic inputs","authors":"Sam J. Leuthold, Jennifer L. Soong, Rebecca J. Even, M. Francesca Cotrufo","doi":"10.1038/s41561-025-01638-y","DOIUrl":null,"url":null,"abstract":"<p>The stabilization of carbon (C) and nitrogen (N) from organic inputs in soil organic matter constitutes a critical process in ecosystem biogeochemistry, yet the underlying mechanisms are not yet fully understood. Several frameworks have been proposed to explain particulate- and mineral-associated organic matter persistence, but a lack of long-term data has stymied their reconciliation. Here we present the results of an in-field incubation in a grassland in Kansas, USA, that followed <sup>13</sup>C- and <sup>15</sup>N-labelled plant litter and pyrogenic organic matter through the decomposition process and into soil organic matter fractions over the course of a decade. At the end of the experiment, 7.0% and 24.2% of the initial litter C and N, respectively, remained in the soil, while 60.8% and 54.4% of the initial pyrogenic organic matter C and N, respectively, remained. Litter-derived mineral-associated organic matter formed within the first year of litter decomposition, and 10-year sampling revealed that it had persisted relatively unchanged, in terms of both litter-derived C stocks and C:N ratio. These results provide further evidence that mineral-associated organic matter is stabilized via the sorption of soluble inputs and suggest that stabilization and persistence can occur largely independent of particulate organic matter dynamics.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"2 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01638-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The stabilization of carbon (C) and nitrogen (N) from organic inputs in soil organic matter constitutes a critical process in ecosystem biogeochemistry, yet the underlying mechanisms are not yet fully understood. Several frameworks have been proposed to explain particulate- and mineral-associated organic matter persistence, but a lack of long-term data has stymied their reconciliation. Here we present the results of an in-field incubation in a grassland in Kansas, USA, that followed 13C- and 15N-labelled plant litter and pyrogenic organic matter through the decomposition process and into soil organic matter fractions over the course of a decade. At the end of the experiment, 7.0% and 24.2% of the initial litter C and N, respectively, remained in the soil, while 60.8% and 54.4% of the initial pyrogenic organic matter C and N, respectively, remained. Litter-derived mineral-associated organic matter formed within the first year of litter decomposition, and 10-year sampling revealed that it had persisted relatively unchanged, in terms of both litter-derived C stocks and C:N ratio. These results provide further evidence that mineral-associated organic matter is stabilized via the sorption of soluble inputs and suggest that stabilization and persistence can occur largely independent of particulate organic matter dynamics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信