Liu Yang, Jialu Tian, Yulong Ding, Avinash Alagumalai, Fatih Selimefendigil, Mortaza Aghbashlo, Meisam Tabatabaei, L. Godson Asirvatham, Somchai Wongwises, S. A. Sherif, Efstathios E. Michaelides, Christos N. Markides, Omid Mahian
{"title":"The physics of phase transition phenomena enhanced by nanoparticles","authors":"Liu Yang, Jialu Tian, Yulong Ding, Avinash Alagumalai, Fatih Selimefendigil, Mortaza Aghbashlo, Meisam Tabatabaei, L. Godson Asirvatham, Somchai Wongwises, S. A. Sherif, Efstathios E. Michaelides, Christos N. Markides, Omid Mahian","doi":"10.1063/5.0200714","DOIUrl":null,"url":null,"abstract":"Phase transitions are fundamental phenomena in physics that have been extensively studied owing to their applications across diverse industrial sectors, including energy, power, healthcare, and the environment. An example of such applications in the energy sector is thermal energy storage using phase change materials. In such systems, and indeed in many other thermal systems, an emerging and promising approach involves the use of nanoparticles, which have been extensively studied for their potential to enhance the performance of thermal systems. However, conducting thermodynamic analyses of thermal systems in the presence of nanoparticles proves to be complex and resource-consuming because of the involvement of many parameters, including (i) temperature, molecular structure, and composition of the host fluid in which nanoparticles are either dispersed or in physical contact; (ii) nanoparticle morphology, size, type, and concentration; and (iii) complex interactions between the nanoparticles and the base fluid. This article reviews recent studies on the role of nanoparticles in phase transition processes such as freezing, melting, boiling, evaporation, and condensation. It begins with an overview of phase transition phenomena without nanoparticles, emphasizing the most important controlling parameters, and then examines the underlying physics of nanoparticle-involved phase transitions, critically examining their impact on process speed (transport rates). The article also explores physical phenomena, such as Brownian motion, thermophoresis, microconvection, and nanoparticle agglomeration, and considers their contribution to rate control (enhancement or reduction). Finally, the article presents challenges, research gaps, and suggestions for future exploration, aimed at offering a comprehensive understanding of the complex interplay between the presence of nanoparticles and the phase transition processes.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"239 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0200714","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Phase transitions are fundamental phenomena in physics that have been extensively studied owing to their applications across diverse industrial sectors, including energy, power, healthcare, and the environment. An example of such applications in the energy sector is thermal energy storage using phase change materials. In such systems, and indeed in many other thermal systems, an emerging and promising approach involves the use of nanoparticles, which have been extensively studied for their potential to enhance the performance of thermal systems. However, conducting thermodynamic analyses of thermal systems in the presence of nanoparticles proves to be complex and resource-consuming because of the involvement of many parameters, including (i) temperature, molecular structure, and composition of the host fluid in which nanoparticles are either dispersed or in physical contact; (ii) nanoparticle morphology, size, type, and concentration; and (iii) complex interactions between the nanoparticles and the base fluid. This article reviews recent studies on the role of nanoparticles in phase transition processes such as freezing, melting, boiling, evaporation, and condensation. It begins with an overview of phase transition phenomena without nanoparticles, emphasizing the most important controlling parameters, and then examines the underlying physics of nanoparticle-involved phase transitions, critically examining their impact on process speed (transport rates). The article also explores physical phenomena, such as Brownian motion, thermophoresis, microconvection, and nanoparticle agglomeration, and considers their contribution to rate control (enhancement or reduction). Finally, the article presents challenges, research gaps, and suggestions for future exploration, aimed at offering a comprehensive understanding of the complex interplay between the presence of nanoparticles and the phase transition processes.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.