Transparent OLED displays for selective bidirectional viewing using ZnO/Yb:Ag cathode with highly smooth and low-barrier surface

IF 20.6 Q1 OPTICS
Eun-young Choi, Sung-Cheon Kang, Kanghoon Kim, Su-Hyeon Lee, Jeong-Beom Kim, Jang-Kun Song
{"title":"Transparent OLED displays for selective bidirectional viewing using ZnO/Yb:Ag cathode with highly smooth and low-barrier surface","authors":"Eun-young Choi, Sung-Cheon Kang, Kanghoon Kim, Su-Hyeon Lee, Jeong-Beom Kim, Jang-Kun Song","doi":"10.1038/s41377-024-01739-0","DOIUrl":null,"url":null,"abstract":"<p>Transparent organic light-emitting diode (TrOLED) displays represent cutting-edge technology posed to significantly enhance user experience. This study addresses two pivotal challenges in TrOLED development. Firstly, we focus on the innovation of transparent cathodes, a fundamental component in TrOLEDs, by introducing a ZnO/Yb:Ag cathode. This cathode employs a combination of seed layer and metal doping techniques to achieve a highly uniform surface morphology and a low surface energy barrier. The optimized Yb:Ag cathode on ZnO, with a mere thickness of 15 nm, exhibits remarkable properties: an extremely low surface roughness of 0.52 nm, sheet resistance of 11.6 Ω ϒ<sup>−1</sup>, an optical transmittance of 86.7% at 510 nm, and tunable work function (here, optimized to be 3.86 eV), ensuring superior electron injection capability. Secondly, we propose a novel TrOLED pixel structure that features selective bidirectional viewing, allowing different types of information to be selectively displayed on each side while preserving overall transparency and minimizing pixel complexity. This design innovation distinguishes itself from conventional TrOLEDs that display images on only one side. The bidirectional TrOLED design not only enhances openness and esthetic appeal but also holds promise for diverse applications across various user environments.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"1 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01739-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Transparent organic light-emitting diode (TrOLED) displays represent cutting-edge technology posed to significantly enhance user experience. This study addresses two pivotal challenges in TrOLED development. Firstly, we focus on the innovation of transparent cathodes, a fundamental component in TrOLEDs, by introducing a ZnO/Yb:Ag cathode. This cathode employs a combination of seed layer and metal doping techniques to achieve a highly uniform surface morphology and a low surface energy barrier. The optimized Yb:Ag cathode on ZnO, with a mere thickness of 15 nm, exhibits remarkable properties: an extremely low surface roughness of 0.52 nm, sheet resistance of 11.6 Ω ϒ−1, an optical transmittance of 86.7% at 510 nm, and tunable work function (here, optimized to be 3.86 eV), ensuring superior electron injection capability. Secondly, we propose a novel TrOLED pixel structure that features selective bidirectional viewing, allowing different types of information to be selectively displayed on each side while preserving overall transparency and minimizing pixel complexity. This design innovation distinguishes itself from conventional TrOLEDs that display images on only one side. The bidirectional TrOLED design not only enhances openness and esthetic appeal but also holds promise for diverse applications across various user environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信