{"title":"Hanle spin precession induced inverted magnetoresistance in chiral/semiconductor systems","authors":"S. H. Tirion, B. J. van Wees","doi":"10.1063/5.0254772","DOIUrl":null,"url":null,"abstract":"In the past decade, chiral materials have drawn significant attention because it is widely claimed that they can act as spin injectors/detectors due to the chirality-induced spin selectivity effect. Nevertheless, the microscopic origin of this effect is not understood, which generates the need for transport experiments that confirm the spin-dependent transport in chiral materials. Hanle spin precession measurements can unambiguously prove the injection and detection of a spin accumulation in a non-magnetic material, as was shown with traditional ferromagnetic injectors/detectors. Here, we model and analyze in detail the Hanle spin precession-induced magnetoresistance for chiral/semiconductor systems and find that the signal is inverted as compared to the ferromagnetic case. We explicitly model the spin injection and detection by both a chiral system and a ferromagnetic system, as well as the spin transport in a semiconductor, for a general set of (spin) transport parameters that cover the relevant experimental regime. For all sets of parameters, we find that the Hanle signals for a chiral system and ferromagnet are each other's opposites. We also discuss the implications for four terminal nonlocal spin transport experiments with separate chiral spin injector and detectors.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"15 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0254772","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the past decade, chiral materials have drawn significant attention because it is widely claimed that they can act as spin injectors/detectors due to the chirality-induced spin selectivity effect. Nevertheless, the microscopic origin of this effect is not understood, which generates the need for transport experiments that confirm the spin-dependent transport in chiral materials. Hanle spin precession measurements can unambiguously prove the injection and detection of a spin accumulation in a non-magnetic material, as was shown with traditional ferromagnetic injectors/detectors. Here, we model and analyze in detail the Hanle spin precession-induced magnetoresistance for chiral/semiconductor systems and find that the signal is inverted as compared to the ferromagnetic case. We explicitly model the spin injection and detection by both a chiral system and a ferromagnetic system, as well as the spin transport in a semiconductor, for a general set of (spin) transport parameters that cover the relevant experimental regime. For all sets of parameters, we find that the Hanle signals for a chiral system and ferromagnet are each other's opposites. We also discuss the implications for four terminal nonlocal spin transport experiments with separate chiral spin injector and detectors.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.