High-crystallinity and enhanced mobility in In2O3 thin-film transistors via metal-induced method

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Zhipeng Chen, Zhaoxing Fu, Tingting Jin, Liang Jing, Junyan Ren, Minghang Lei, Jingting Sun, Hongyu Chen, Lingyan Liang, Hongtao Cao
{"title":"High-crystallinity and enhanced mobility in In2O3 thin-film transistors via metal-induced method","authors":"Zhipeng Chen, Zhaoxing Fu, Tingting Jin, Liang Jing, Junyan Ren, Minghang Lei, Jingting Sun, Hongyu Chen, Lingyan Liang, Hongtao Cao","doi":"10.1063/5.0240919","DOIUrl":null,"url":null,"abstract":"Meeting the advanced demands of display technology, developing oxide semiconductor thin-film transistors (TFTs) with high mobility remains a significant challenge in current research. This paper reports the fabrication of high-crystallinity In2O3 thin films and high-mobility TFT devices through low-temperature annealing using aluminum (Al) and tantalum (Ta) for induced crystallization. In the control film, partial crystallization occurs only in the central region, with grain lateral dimensions around 50 nm, resulting in a reasonable field-effect mobility of 23.9 cm2/V s for the corresponding TFTs. In contrast, metal-induced films form In2O3 grains with lateral dimensions exceeding 100 nm, along with numerous spherical crystalline particles at the metal/In2O3 interface. The well-defined front-channel structure allows the Al- and Ta-induced In2O3 TFTs to achieve high field-effect mobilities of 65.2 and 101.0 cm2/V s, respectively. Additionally, Al induction improves the subthreshold swing and threshold voltage (Vth), enhancing overall electrical performance. This study investigates the crystallization behavior of induced technology in the In2O3 system, elucidates the mechanism of metal-induced crystallization, and demonstrates that Al-induced crystallization significantly enhances the performance of metal oxide TFTs under processing temperature constraints.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"12 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0240919","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Meeting the advanced demands of display technology, developing oxide semiconductor thin-film transistors (TFTs) with high mobility remains a significant challenge in current research. This paper reports the fabrication of high-crystallinity In2O3 thin films and high-mobility TFT devices through low-temperature annealing using aluminum (Al) and tantalum (Ta) for induced crystallization. In the control film, partial crystallization occurs only in the central region, with grain lateral dimensions around 50 nm, resulting in a reasonable field-effect mobility of 23.9 cm2/V s for the corresponding TFTs. In contrast, metal-induced films form In2O3 grains with lateral dimensions exceeding 100 nm, along with numerous spherical crystalline particles at the metal/In2O3 interface. The well-defined front-channel structure allows the Al- and Ta-induced In2O3 TFTs to achieve high field-effect mobilities of 65.2 and 101.0 cm2/V s, respectively. Additionally, Al induction improves the subthreshold swing and threshold voltage (Vth), enhancing overall electrical performance. This study investigates the crystallization behavior of induced technology in the In2O3 system, elucidates the mechanism of metal-induced crystallization, and demonstrates that Al-induced crystallization significantly enhances the performance of metal oxide TFTs under processing temperature constraints.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信