Separating leaf area index from plant area index using semi-supervised classification of digital hemispheric canopy photographs: A case study of dryland vegetation

IF 5.6 1区 农林科学 Q1 AGRONOMY
Jake Eckersley, Caitlin E. Moore, Sally E. Thompson, Michael Renton, Pauline F. Grierson
{"title":"Separating leaf area index from plant area index using semi-supervised classification of digital hemispheric canopy photographs: A case study of dryland vegetation","authors":"Jake Eckersley, Caitlin E. Moore, Sally E. Thompson, Michael Renton, Pauline F. Grierson","doi":"10.1016/j.agrformet.2025.110395","DOIUrl":null,"url":null,"abstract":"Leaf area index (<em>LAI</em>) describes the main plant surface area for gas exchange. Accurate <em>LAI</em> measurements are integral to effective hydrological, ecological, and climate modelling. <em>LAI</em> is commonly modelled using canopy gap fraction measurements from optical sensors. In woody vegetation, however, the wood to total plant area ratio (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span>) must also be estimated to convert plant area index (<em>PAI</em>) to <em>LAI</em>. Historically, estimating <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> required destructive harvests and is a potential source of <em>LAI</em> error. In this study, we present a theoretical framework for estimating <em>LAI</em> from digital hemispheric canopy photography by correcting for <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> within each image using semi-supervised pixel classification. We apply this framework to 201 images collected in semi-arid Australian vegetation (overstorey <em>LAI</em> range 0–5) to explore potential sources of error from: image classification, <em>LAI</em> model implementation, and differences in <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> among vegetation types. Leaf, wood, and canopy gap (sky) pixels were classified using a random forest (RF) algorithm with 87.7 ± 0.01 % accuracy (mean ± standard error) under overcast skies but 81.3 ± 0.01 % under clear sky conditions where leaf and wood pixel classification was inconsistent. <em>LAI</em> estimates using the proposed approach had a strong linear relationship to <em>PAI</em> (<em>r<sup>2</sup></em> ≥ 0.97). However, the proportional contribution of woody material to canopy gap fraction was zenith angle dependent. Allowing <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> to vary by zenith and azimuth angle when calculating <em>LAI</em> resulted in estimates 10–17 % higher than widely used <em>PAI</em> conversion methods. The zenith angle distribution of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> also differed among co-occurring vegetation types. Allowing the <em>PAI</em> to <em>LAI</em> regression slope to vary based on the dominant genus reduced <em>PAI</em> conversion error by ∼2 % (<em>p</em> &lt; 0.001). Quantifying <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> variability within canopies and between vegetation types using the method outlined here can reduce on-ground <em>LAI</em> measurement uncertainty.","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"13 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.agrformet.2025.110395","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Leaf area index (LAI) describes the main plant surface area for gas exchange. Accurate LAI measurements are integral to effective hydrological, ecological, and climate modelling. LAI is commonly modelled using canopy gap fraction measurements from optical sensors. In woody vegetation, however, the wood to total plant area ratio (α) must also be estimated to convert plant area index (PAI) to LAI. Historically, estimating α required destructive harvests and is a potential source of LAI error. In this study, we present a theoretical framework for estimating LAI from digital hemispheric canopy photography by correcting for α within each image using semi-supervised pixel classification. We apply this framework to 201 images collected in semi-arid Australian vegetation (overstorey LAI range 0–5) to explore potential sources of error from: image classification, LAI model implementation, and differences in α among vegetation types. Leaf, wood, and canopy gap (sky) pixels were classified using a random forest (RF) algorithm with 87.7 ± 0.01 % accuracy (mean ± standard error) under overcast skies but 81.3 ± 0.01 % under clear sky conditions where leaf and wood pixel classification was inconsistent. LAI estimates using the proposed approach had a strong linear relationship to PAI (r2 ≥ 0.97). However, the proportional contribution of woody material to canopy gap fraction was zenith angle dependent. Allowing α to vary by zenith and azimuth angle when calculating LAI resulted in estimates 10–17 % higher than widely used PAI conversion methods. The zenith angle distribution of α also differed among co-occurring vegetation types. Allowing the PAI to LAI regression slope to vary based on the dominant genus reduced PAI conversion error by ∼2 % (p < 0.001). Quantifying α variability within canopies and between vegetation types using the method outlined here can reduce on-ground LAI measurement uncertainty.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信