Separating leaf area index from plant area index using semi-supervised classification of digital hemispheric canopy photographs: A case study of dryland vegetation
Jake Eckersley, Caitlin E. Moore, Sally E. Thompson, Michael Renton, Pauline F. Grierson
{"title":"Separating leaf area index from plant area index using semi-supervised classification of digital hemispheric canopy photographs: A case study of dryland vegetation","authors":"Jake Eckersley, Caitlin E. Moore, Sally E. Thompson, Michael Renton, Pauline F. Grierson","doi":"10.1016/j.agrformet.2025.110395","DOIUrl":null,"url":null,"abstract":"Leaf area index (<em>LAI</em>) describes the main plant surface area for gas exchange. Accurate <em>LAI</em> measurements are integral to effective hydrological, ecological, and climate modelling. <em>LAI</em> is commonly modelled using canopy gap fraction measurements from optical sensors. In woody vegetation, however, the wood to total plant area ratio (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span>) must also be estimated to convert plant area index (<em>PAI</em>) to <em>LAI</em>. Historically, estimating <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> required destructive harvests and is a potential source of <em>LAI</em> error. In this study, we present a theoretical framework for estimating <em>LAI</em> from digital hemispheric canopy photography by correcting for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> within each image using semi-supervised pixel classification. We apply this framework to 201 images collected in semi-arid Australian vegetation (overstorey <em>LAI</em> range 0–5) to explore potential sources of error from: image classification, <em>LAI</em> model implementation, and differences in <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> among vegetation types. Leaf, wood, and canopy gap (sky) pixels were classified using a random forest (RF) algorithm with 87.7 ± 0.01 % accuracy (mean ± standard error) under overcast skies but 81.3 ± 0.01 % under clear sky conditions where leaf and wood pixel classification was inconsistent. <em>LAI</em> estimates using the proposed approach had a strong linear relationship to <em>PAI</em> (<em>r<sup>2</sup></em> ≥ 0.97). However, the proportional contribution of woody material to canopy gap fraction was zenith angle dependent. Allowing <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> to vary by zenith and azimuth angle when calculating <em>LAI</em> resulted in estimates 10–17 % higher than widely used <em>PAI</em> conversion methods. The zenith angle distribution of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> also differed among co-occurring vegetation types. Allowing the <em>PAI</em> to <em>LAI</em> regression slope to vary based on the dominant genus reduced <em>PAI</em> conversion error by ∼2 % (<em>p</em> < 0.001). Quantifying <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3B1;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 640.5 600.2\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3B1\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">α</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">α</mi></math></script></span> variability within canopies and between vegetation types using the method outlined here can reduce on-ground <em>LAI</em> measurement uncertainty.","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"13 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.agrformet.2025.110395","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf area index (LAI) describes the main plant surface area for gas exchange. Accurate LAI measurements are integral to effective hydrological, ecological, and climate modelling. LAI is commonly modelled using canopy gap fraction measurements from optical sensors. In woody vegetation, however, the wood to total plant area ratio () must also be estimated to convert plant area index (PAI) to LAI. Historically, estimating required destructive harvests and is a potential source of LAI error. In this study, we present a theoretical framework for estimating LAI from digital hemispheric canopy photography by correcting for within each image using semi-supervised pixel classification. We apply this framework to 201 images collected in semi-arid Australian vegetation (overstorey LAI range 0–5) to explore potential sources of error from: image classification, LAI model implementation, and differences in among vegetation types. Leaf, wood, and canopy gap (sky) pixels were classified using a random forest (RF) algorithm with 87.7 ± 0.01 % accuracy (mean ± standard error) under overcast skies but 81.3 ± 0.01 % under clear sky conditions where leaf and wood pixel classification was inconsistent. LAI estimates using the proposed approach had a strong linear relationship to PAI (r2 ≥ 0.97). However, the proportional contribution of woody material to canopy gap fraction was zenith angle dependent. Allowing to vary by zenith and azimuth angle when calculating LAI resulted in estimates 10–17 % higher than widely used PAI conversion methods. The zenith angle distribution of also differed among co-occurring vegetation types. Allowing the PAI to LAI regression slope to vary based on the dominant genus reduced PAI conversion error by ∼2 % (p < 0.001). Quantifying variability within canopies and between vegetation types using the method outlined here can reduce on-ground LAI measurement uncertainty.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.