{"title":"Defect Migration and Phase Transformations in Two-Dimensional Iron Chloride inside Bilayer Graphene","authors":"Qiunan Liu, Haiming Sun, Yung-Chang Lin, Mahdi Ghorbani-Asl, Silvan Kretschmer, Chi-Chun Cheng, Po-Wen Chiu, Hiroki Ago, Arkady V. Krasheninnikov, Kazu Suenaga","doi":"10.1021/acsnano.4c16177","DOIUrl":null,"url":null,"abstract":"The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments. In this study, we investigate the behavior of atomic-scale defects in iron chlorides intercalated into bilayer graphene by using scanning transmission electron microscopy and first-principles calculations. We observe transformations between the FeCl<sub>2</sub> and FeCl<sub>3</sub> phases and elucidate the role of defects in the transformations. Specifically, three types of defects are identified: Fe vacancies in FeCl<sub>2</sub> domains and Fe adatoms and interstitials in FeCl<sub>3</sub> domains, each exhibiting distinct dynamic behaviors. We also observed a crystalline phase with an unusual stoichiometry of Fe<sub>5</sub>Cl<sub>18</sub> that has not been reported before. Our findings not only advance the understanding of intercalation mechanism of 2D materials but also highlight the profound impact of atomic-scale defects on their properties and potential technological applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"112 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16177","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments. In this study, we investigate the behavior of atomic-scale defects in iron chlorides intercalated into bilayer graphene by using scanning transmission electron microscopy and first-principles calculations. We observe transformations between the FeCl2 and FeCl3 phases and elucidate the role of defects in the transformations. Specifically, three types of defects are identified: Fe vacancies in FeCl2 domains and Fe adatoms and interstitials in FeCl3 domains, each exhibiting distinct dynamic behaviors. We also observed a crystalline phase with an unusual stoichiometry of Fe5Cl18 that has not been reported before. Our findings not only advance the understanding of intercalation mechanism of 2D materials but also highlight the profound impact of atomic-scale defects on their properties and potential technological applications.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.