Defect Migration and Phase Transformations in Two-Dimensional Iron Chloride inside Bilayer Graphene

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-24 DOI:10.1021/acsnano.4c16177
Qiunan Liu, Haiming Sun, Yung-Chang Lin, Mahdi Ghorbani-Asl, Silvan Kretschmer, Chi-Chun Cheng, Po-Wen Chiu, Hiroki Ago, Arkady V. Krasheninnikov, Kazu Suenaga
{"title":"Defect Migration and Phase Transformations in Two-Dimensional Iron Chloride inside Bilayer Graphene","authors":"Qiunan Liu, Haiming Sun, Yung-Chang Lin, Mahdi Ghorbani-Asl, Silvan Kretschmer, Chi-Chun Cheng, Po-Wen Chiu, Hiroki Ago, Arkady V. Krasheninnikov, Kazu Suenaga","doi":"10.1021/acsnano.4c16177","DOIUrl":null,"url":null,"abstract":"The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments. In this study, we investigate the behavior of atomic-scale defects in iron chlorides intercalated into bilayer graphene by using scanning transmission electron microscopy and first-principles calculations. We observe transformations between the FeCl<sub>2</sub> and FeCl<sub>3</sub> phases and elucidate the role of defects in the transformations. Specifically, three types of defects are identified: Fe vacancies in FeCl<sub>2</sub> domains and Fe adatoms and interstitials in FeCl<sub>3</sub> domains, each exhibiting distinct dynamic behaviors. We also observed a crystalline phase with an unusual stoichiometry of Fe<sub>5</sub>Cl<sub>18</sub> that has not been reported before. Our findings not only advance the understanding of intercalation mechanism of 2D materials but also highlight the profound impact of atomic-scale defects on their properties and potential technological applications.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"112 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16177","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments. In this study, we investigate the behavior of atomic-scale defects in iron chlorides intercalated into bilayer graphene by using scanning transmission electron microscopy and first-principles calculations. We observe transformations between the FeCl2 and FeCl3 phases and elucidate the role of defects in the transformations. Specifically, three types of defects are identified: Fe vacancies in FeCl2 domains and Fe adatoms and interstitials in FeCl3 domains, each exhibiting distinct dynamic behaviors. We also observed a crystalline phase with an unusual stoichiometry of Fe5Cl18 that has not been reported before. Our findings not only advance the understanding of intercalation mechanism of 2D materials but also highlight the profound impact of atomic-scale defects on their properties and potential technological applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信