Jieun Heo, Seunghwan Seo, Juyoung Lee, Kang Hee Ku
{"title":"Scalable Fabrication of Freestanding Jammed Nanoparticle Films via Pickering Emulsion-Mediated Interfacial Assembly","authors":"Jieun Heo, Seunghwan Seo, Juyoung Lee, Kang Hee Ku","doi":"10.1021/acsnano.4c13566","DOIUrl":null,"url":null,"abstract":"Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly. This method enables the efficient transfer of closely packed NP networks from emulsions to air–water interface and ultimately to diverse substrates, which provides broad versatility for tailored applications. Utilizing the jamming structures of NPs at the fluid interface, we achieve precise control over film size with homogeneous thickness while minimizing material waste and facilitating recyclability. Notably, the films can be smoothly transferred to micropatterned, stretchable, and complex three-dimensional substrates, enabling the realization of robust conformal coatings. The resulting films exhibit high structural stability and flexibility, demonstrating significant potential for the design of stretchable and flexible devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"12 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13566","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Freestanding networked nanoparticle (NP) films hold substantial potential due to their high surface areas and customizable porosities. However, NPs with high surface energies and heterogeneous sizes or shapes present considerable challenges as they tend to aggregate, compromising their structural integrities. In this study, we report the scalable fabrication of ultrathin, bicontinuous, and densely packed carbon NP films via Pickering emulsion-mediated interfacial assembly. This method enables the efficient transfer of closely packed NP networks from emulsions to air–water interface and ultimately to diverse substrates, which provides broad versatility for tailored applications. Utilizing the jamming structures of NPs at the fluid interface, we achieve precise control over film size with homogeneous thickness while minimizing material waste and facilitating recyclability. Notably, the films can be smoothly transferred to micropatterned, stretchable, and complex three-dimensional substrates, enabling the realization of robust conformal coatings. The resulting films exhibit high structural stability and flexibility, demonstrating significant potential for the design of stretchable and flexible devices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.