Runxiu Wei, Yiman Chen, Qiang Yang, Tongge Wang, Yanyun He, Na Yin, Liya Yang, Yifei Gao, Ling Guo, Min Feng
{"title":"Nanoenzyme-Anchored Mitofactories Boost Mitochondrial Transplantation to Restore Locomotor Function after Paralysis Following Spinal Cord Injury","authors":"Runxiu Wei, Yiman Chen, Qiang Yang, Tongge Wang, Yanyun He, Na Yin, Liya Yang, Yifei Gao, Ling Guo, Min Feng","doi":"10.1021/acsnano.4c12557","DOIUrl":null,"url":null,"abstract":"Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS. Furthermore, HQ-Mitofactories enabled efficient transfer of therapeutic mitochondria to injured neurons primarily via gap junctions, resulting in the restoration of mitochondrial homeostasis and thereby suppressing intracellular ROS burst and facilitating neuronal repair. After <i>i.v.</i> administration, HQ-Mitofactories migrated to the injured spinal cords of SCI mice and subsequently promoted neuronal regeneration and remyelination. Consequently, HQ-Mitofactory-treated mice successfully recovered locomotor function within 4 weeks, with 40% of the mice fully restoring walking after hindlimb paralysis. Conversely, untreated SCI exhibited completely abolished hindlimb movements. In light of real-time generation of vitality-boosting mitochondria even under oxidative stress and enabling targeted mitochondrial transfer, HQ-Mitofactories have promising therapeutic potential in the context of mitochondrial transplantation to reduce SCI-related paralysis, and more broadly impact the field of neuroregenerative medicine.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"15 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12557","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial transplantation is a significant therapeutic approach for addressing mitochondrial dysfunction in patients with spinal cord injury (SCI), yet it is limited by rapid mitochondrial deactivation and low transfer efficiency. Here, high-quality mitochondria microfactories (HQ-Mitofactories) were constructed by anchoring Prussian blue nanoenzymes onto mesenchymal stem cells for effective mitochondrial transplantation to treat paralysis from SCI. Notably, the results demonstrated that HQ-Mitofactories could continuously produce vitality-boosting mitochondria with highly interconnected and elongated network structures under oxidative stress by scavenging excessive ROS. Furthermore, HQ-Mitofactories enabled efficient transfer of therapeutic mitochondria to injured neurons primarily via gap junctions, resulting in the restoration of mitochondrial homeostasis and thereby suppressing intracellular ROS burst and facilitating neuronal repair. After i.v. administration, HQ-Mitofactories migrated to the injured spinal cords of SCI mice and subsequently promoted neuronal regeneration and remyelination. Consequently, HQ-Mitofactory-treated mice successfully recovered locomotor function within 4 weeks, with 40% of the mice fully restoring walking after hindlimb paralysis. Conversely, untreated SCI exhibited completely abolished hindlimb movements. In light of real-time generation of vitality-boosting mitochondria even under oxidative stress and enabling targeted mitochondrial transfer, HQ-Mitofactories have promising therapeutic potential in the context of mitochondrial transplantation to reduce SCI-related paralysis, and more broadly impact the field of neuroregenerative medicine.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.