Kaiming Ma, Huolin Huang, Nan Sun, Nannan Ding, Qingyuan Zuo, Wenchao Shan, Li Zhang, Guohao Lv, Jianxun Dai, Deyi Fu
{"title":"GaN-based shallow-trench vertical Hall devices","authors":"Kaiming Ma, Huolin Huang, Nan Sun, Nannan Ding, Qingyuan Zuo, Wenchao Shan, Li Zhang, Guohao Lv, Jianxun Dai, Deyi Fu","doi":"10.1063/5.0250222","DOIUrl":null,"url":null,"abstract":"In this Letter, a GaN-based vertical Hall device is designed and experimentally fabricated, offering an effective solution for in-plane magnetic field detection. By introducing a shallow trench structure between the excitation and sensing electrodes, the short-circuit current flowing into sensing contacts in GaN-based vertical Hall devices was strongly suppressed. Through TCAD simulation analysis, the optimal range of the shallow trench depth was determined, which was then confirmed by the experimental data. From the experimental results, the sensitivity was found to be improved by 4674.7%, from 3.8 to 177.6 mV/AT, while nonlinearity was reduced by 95.5%, from 19.17% to 0.87%. The effects of device width and sensing electrode length on the device performance were also investigated in detail. Finally, this work experimentally validated the device's angle detection capability, indicating that the GaN-based vertical Hall sensor could be combined with the currently well-established horizontal Hall sensors to create high-performance monolithic integrated three-dimensional Hall sensors.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0250222","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this Letter, a GaN-based vertical Hall device is designed and experimentally fabricated, offering an effective solution for in-plane magnetic field detection. By introducing a shallow trench structure between the excitation and sensing electrodes, the short-circuit current flowing into sensing contacts in GaN-based vertical Hall devices was strongly suppressed. Through TCAD simulation analysis, the optimal range of the shallow trench depth was determined, which was then confirmed by the experimental data. From the experimental results, the sensitivity was found to be improved by 4674.7%, from 3.8 to 177.6 mV/AT, while nonlinearity was reduced by 95.5%, from 19.17% to 0.87%. The effects of device width and sensing electrode length on the device performance were also investigated in detail. Finally, this work experimentally validated the device's angle detection capability, indicating that the GaN-based vertical Hall sensor could be combined with the currently well-established horizontal Hall sensors to create high-performance monolithic integrated three-dimensional Hall sensors.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.