Melina Filzinger, Ashlee R. Caddell, Dhruv Jani, Martin Steinel, Leonardo Giani, Nils Huntemann, Benjamin M. Roberts
{"title":"Ultralight Dark Matter Search with Space-Time Separated Atomic Clocks and Cavities","authors":"Melina Filzinger, Ashlee R. Caddell, Dhruv Jani, Martin Steinel, Leonardo Giani, Nils Huntemann, Benjamin M. Roberts","doi":"10.1103/physrevlett.134.031001","DOIUrl":null,"url":null,"abstract":"We devise and demonstrate a method to search for nongravitational couplings of ultralight dark matter to standard model particles using space-time separated atomic clocks and cavity-stabilized lasers. By making use of space-time separated sensors, which probe different values of an oscillating dark matter field, we can search for couplings that cancel in typical local experiments. This provides sensitivity to both the temporal and spatial fluctuations of the field. We demonstrate this method using existing data from a frequency comparison of lasers stabilized to two optical cavities connected via a 2220 km fiber link [Schioppo , ], and from the atomic clocks on board the global positioning system satellites. Our analysis results in constraints on the coupling of scalar dark matter to electrons, d</a:mi>m</a:mi>e</a:mi></a:msub></a:msub></a:math>, for masses between <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:msup><c:mrow><c:mn>10</c:mn></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>19</c:mn></c:mrow></c:msup></c:mrow></c:math> and <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mn>2</e:mn><e:mo>×</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>15</e:mn></e:mrow></e:msup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:mi>eV</e:mi><e:mo>/</e:mo><e:msup><e:mrow><e:mi>c</e:mi></e:mrow><e:mrow><e:mn>2</e:mn></e:mrow></e:msup></e:mrow></e:math>. These are the first constraints on <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>d</g:mi><g:msub><g:mi>m</g:mi><g:mi>e</g:mi></g:msub></g:msub></g:math> alone in this mass range. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"138 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.031001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We devise and demonstrate a method to search for nongravitational couplings of ultralight dark matter to standard model particles using space-time separated atomic clocks and cavity-stabilized lasers. By making use of space-time separated sensors, which probe different values of an oscillating dark matter field, we can search for couplings that cancel in typical local experiments. This provides sensitivity to both the temporal and spatial fluctuations of the field. We demonstrate this method using existing data from a frequency comparison of lasers stabilized to two optical cavities connected via a 2220 km fiber link [Schioppo , ], and from the atomic clocks on board the global positioning system satellites. Our analysis results in constraints on the coupling of scalar dark matter to electrons, dme, for masses between 10−19 and 2×10−15eV/c2. These are the first constraints on dme alone in this mass range. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks