Self-reports map the landscape of task states derived from brain imaging.

Brontë Mckeown, Ian Goodall-Halliwell, Raven Wallace, Louis Chitiz, Bridget Mulholland, Theodoros Karapanagiotidis, Samyogita Hardikar, Will Strawson, Adam Turnbull, Tamara Vanderwal, Nerissa Ho, Hao-Ting Wang, Ting Xu, Michael Milham, Xiuyi Wang, Meichao Zhang, Tirso Rj Gonzalez Alam, Reinder Vos de Wael, Boris Bernhardt, Daniel Margulies, Jeffrey Wammes, Elizabeth Jefferies, Robert Leech, Jonathan Smallwood
{"title":"Self-reports map the landscape of task states derived from brain imaging.","authors":"Brontë Mckeown, Ian Goodall-Halliwell, Raven Wallace, Louis Chitiz, Bridget Mulholland, Theodoros Karapanagiotidis, Samyogita Hardikar, Will Strawson, Adam Turnbull, Tamara Vanderwal, Nerissa Ho, Hao-Ting Wang, Ting Xu, Michael Milham, Xiuyi Wang, Meichao Zhang, Tirso Rj Gonzalez Alam, Reinder Vos de Wael, Boris Bernhardt, Daniel Margulies, Jeffrey Wammes, Elizabeth Jefferies, Robert Leech, Jonathan Smallwood","doi":"10.1038/s44271-025-00184-y","DOIUrl":null,"url":null,"abstract":"<p><p>Psychological states influence our happiness and productivity; however, estimates of their impact have historically been assumed to be limited by the accuracy with which introspection can quantify them. Over the last two decades, studies have shown that introspective descriptions of psychological states correlate with objective indicators of cognition, including task performance and metrics of brain function, using techniques like functional magnetic resonance imaging (fMRI). Such evidence suggests it may be possible to quantify the mapping between self-reports of experience and objective representations of those states (e.g., those inferred from measures of brain activity). Here, we used machine learning to show that self-reported descriptions of experiences across tasks can reliably map the objective landscape of task states derived from brain activity. In our study, 194 participants provided descriptions of their psychological states while performing tasks for which the contribution of different brain systems was available from prior fMRI studies. We used machine learning to combine these reports with descriptions of brain function to form a 'state-space' that reliably predicted patterns of brain activity based solely on unseen descriptions of experience (N = 101). Our study demonstrates that introspective reports can share information with the objective task landscape inferred from brain activity.</p>","PeriodicalId":501698,"journal":{"name":"Communications Psychology","volume":"3 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44271-025-00184-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Psychological states influence our happiness and productivity; however, estimates of their impact have historically been assumed to be limited by the accuracy with which introspection can quantify them. Over the last two decades, studies have shown that introspective descriptions of psychological states correlate with objective indicators of cognition, including task performance and metrics of brain function, using techniques like functional magnetic resonance imaging (fMRI). Such evidence suggests it may be possible to quantify the mapping between self-reports of experience and objective representations of those states (e.g., those inferred from measures of brain activity). Here, we used machine learning to show that self-reported descriptions of experiences across tasks can reliably map the objective landscape of task states derived from brain activity. In our study, 194 participants provided descriptions of their psychological states while performing tasks for which the contribution of different brain systems was available from prior fMRI studies. We used machine learning to combine these reports with descriptions of brain function to form a 'state-space' that reliably predicted patterns of brain activity based solely on unseen descriptions of experience (N = 101). Our study demonstrates that introspective reports can share information with the objective task landscape inferred from brain activity.

自我报告描绘了由大脑成像得出的任务状态的图景。
心理状态影响我们的幸福感和生产力;然而,对其影响的估计历来被认为受到内省量化它们的准确性的限制。在过去的二十年里,研究表明,使用功能磁共振成像(fMRI)等技术,对心理状态的内省描述与认知的客观指标相关,包括任务表现和脑功能指标。这些证据表明,有可能量化经验的自我报告和这些状态的客观表征之间的映射(例如,从大脑活动的测量中推断出来的映射)。在这里,我们使用机器学习来证明,跨任务的自我报告的经验描述可以可靠地映射出来自大脑活动的任务状态的客观图景。在我们的研究中,194名参与者提供了他们在执行任务时的心理状态描述,这些任务是由不同的大脑系统从先前的fMRI研究中获得的。我们使用机器学习将这些报告与大脑功能描述结合起来,形成一个“状态空间”,该空间仅基于未见过的经验描述可靠地预测大脑活动模式(N = 101)。我们的研究表明,内省报告可以与从大脑活动推断的客观任务景观共享信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信