Structure and Function Analysis of Microcystin Transport Protein MlrD.

Jiaqi Li, Huanhuan Sun, Huasheng Wang, Fengqiu Zhou, Wenyu Wu, Dan Chen, Zhengning Zhou, Hai Yan
{"title":"Structure and Function Analysis of Microcystin Transport Protein MlrD.","authors":"Jiaqi Li, Huanhuan Sun, Huasheng Wang, Fengqiu Zhou, Wenyu Wu, Dan Chen, Zhengning Zhou, Hai Yan","doi":"10.1016/j.biochi.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear. This study investigates MlrD from Sphingopyxis sp. USTB-05, utilizing bioinformatics tools for analysis and prediction, conducting homology analysis, and constructing the molecular structure of MlrD. Bioinformatics analysis suggests that MlrD is an alkaline, hydrophobic protein with good thermal stability and is likely located in the cell membrane as a membrane protein without a signal peptide. Homology analysis indicates that MlrD belongs to the PTR2 protein family and contains a PTR2 domain. Phylogenetic analysis reveals that MlrD follows both vertical and horizontal genetic transfer patterns during evolution. Homology modeling demonstrates that the three-dimensional structure of MlrD is primarily composed of 12 α-helices, with conserved residues between the N-terminal and C-terminal domains forming a large reaction cavity. This research broadens current knowledge of MC biodegradation and offers a promising foundation for future studies.</p>","PeriodicalId":93898,"journal":{"name":"Biochimie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.biochi.2025.01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear. This study investigates MlrD from Sphingopyxis sp. USTB-05, utilizing bioinformatics tools for analysis and prediction, conducting homology analysis, and constructing the molecular structure of MlrD. Bioinformatics analysis suggests that MlrD is an alkaline, hydrophobic protein with good thermal stability and is likely located in the cell membrane as a membrane protein without a signal peptide. Homology analysis indicates that MlrD belongs to the PTR2 protein family and contains a PTR2 domain. Phylogenetic analysis reveals that MlrD follows both vertical and horizontal genetic transfer patterns during evolution. Homology modeling demonstrates that the three-dimensional structure of MlrD is primarily composed of 12 α-helices, with conserved residues between the N-terminal and C-terminal domains forming a large reaction cavity. This research broadens current knowledge of MC biodegradation and offers a promising foundation for future studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信