Patrycja Przygodzka , Izabela Szulc-Kielbik , Michal Kielbik , Marcin Pacholczyk , Magdalena Klink
{"title":"Neuromedin U in the tumor microenvironment - Possible actions in tumor progression","authors":"Patrycja Przygodzka , Izabela Szulc-Kielbik , Michal Kielbik , Marcin Pacholczyk , Magdalena Klink","doi":"10.1016/j.bbcan.2025.189269","DOIUrl":null,"url":null,"abstract":"<div><div>Tumor microenvironment (TME) has become a major focus of cancer research as a promising therapeutic target. TME comprises cancer cells surrounded by nonmalignant cells, vessels, lymphoid organs, immune cells, nerves, intercellular components, molecules and metabolites located within or near the tumor lesion.</div><div>Neuromedin U (NMU), a secretory peptide identified in the TME, has gained much attention as an important player in cancer and nonmalignant cell crosstalk. NMU receptors were detected in cancer cells as well as in nonmalignant TME components, such as immune, stromal and endothelial cells.</div><div>We propose here to discuss the concept that NMU secreted by cancer cells activates cellular components of TME and thus contributes to the formation of microenvironment that favors tumor growth and cancer progression. We summarized the available data on cancer tissues and cell types that have been identified as a source of NMU and/or receptor-expressing NMU targets. We made a critical selection of NMU-receptor positive cell types that are known components of the TME of most malignant tumors. Finally, we discussed whether NMUs and NMU receptors represent a potential therapeutic target for cancer treatment, and summarized information on the tools available to modulate their activity.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 2","pages":"Article 189269"},"PeriodicalIF":9.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X25000113","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor microenvironment (TME) has become a major focus of cancer research as a promising therapeutic target. TME comprises cancer cells surrounded by nonmalignant cells, vessels, lymphoid organs, immune cells, nerves, intercellular components, molecules and metabolites located within or near the tumor lesion.
Neuromedin U (NMU), a secretory peptide identified in the TME, has gained much attention as an important player in cancer and nonmalignant cell crosstalk. NMU receptors were detected in cancer cells as well as in nonmalignant TME components, such as immune, stromal and endothelial cells.
We propose here to discuss the concept that NMU secreted by cancer cells activates cellular components of TME and thus contributes to the formation of microenvironment that favors tumor growth and cancer progression. We summarized the available data on cancer tissues and cell types that have been identified as a source of NMU and/or receptor-expressing NMU targets. We made a critical selection of NMU-receptor positive cell types that are known components of the TME of most malignant tumors. Finally, we discussed whether NMUs and NMU receptors represent a potential therapeutic target for cancer treatment, and summarized information on the tools available to modulate their activity.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.