Comparative Study on Sedative and Hypnotic Effects of Crude and Parched Semen Ziziphi Spinosae: Integration of Network Pharmacology and In Vivo Pharmacological Evaluation.

Jing Xia, Ming Cai, Bo Xu, Guang-Jing Xie, Ping Wang
{"title":"Comparative Study on Sedative and Hypnotic Effects of Crude and Parched Semen Ziziphi Spinosae: Integration of Network Pharmacology and In Vivo Pharmacological Evaluation.","authors":"Jing Xia, Ming Cai, Bo Xu, Guang-Jing Xie, Ping Wang","doi":"10.2174/0115734099281920240730051328","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.</p><p><strong>Methods: </strong>This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction. The effects of different SZS products on p-chlorophenylalanine-induced insomnia mice were evaluated through pentobarbital-induced sleep tests, behavioral analyses, examination of brain tissue-related mRNA levels, and measurement of plasma neurotransmitters, aiming to explore the sedative and hypnotic effects of various SZS products.</p><p><strong>Results: </strong>SZS was found to contain a total of 47 genes, including 22 target genes associated with insomnia. These genes may contribute to the sedative and hypnotic effects through 9 related pathways and 69 biological processes. The active components of SZS remained consistent before and after processing. Jujuboside B was found in higher concentrations in crude SZS, while jujuboside A was more abundant in parched SZS. Additionally, SZS exhibited reduced locomotor activity in mice, enhanced the hypnotic effect of pentobarbital sodium, and decreased the levels of acetylcholinesterase, α-1B adrenergic receptor, and solute carrier family 6 member 4 mRNA in the cortex and hippocampus of mice. The levels of acetylcholine, choline acetyltransferase, 5-hydroxyindoleacetic acid, and glutamate in plasma increased, with the hypnotic effect being proportional to the dosage of the drug.</p><p><strong>Conclusion: </strong>SZS demonstrates sedative and hypnotic effects, potentially mediated by its influence on neurotransmitter levels and related receptors within the central nervous system. There was a slight variation in regulatory capabilities before and after SZS processing, with the combined decoction of crude and parched SZS exhibiting a more pronounced effect, particularly at higher dosages.</p>","PeriodicalId":93961,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current computer-aided drug design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734099281920240730051328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.

Methods: This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/ MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction. The effects of different SZS products on p-chlorophenylalanine-induced insomnia mice were evaluated through pentobarbital-induced sleep tests, behavioral analyses, examination of brain tissue-related mRNA levels, and measurement of plasma neurotransmitters, aiming to explore the sedative and hypnotic effects of various SZS products.

Results: SZS was found to contain a total of 47 genes, including 22 target genes associated with insomnia. These genes may contribute to the sedative and hypnotic effects through 9 related pathways and 69 biological processes. The active components of SZS remained consistent before and after processing. Jujuboside B was found in higher concentrations in crude SZS, while jujuboside A was more abundant in parched SZS. Additionally, SZS exhibited reduced locomotor activity in mice, enhanced the hypnotic effect of pentobarbital sodium, and decreased the levels of acetylcholinesterase, α-1B adrenergic receptor, and solute carrier family 6 member 4 mRNA in the cortex and hippocampus of mice. The levels of acetylcholine, choline acetyltransferase, 5-hydroxyindoleacetic acid, and glutamate in plasma increased, with the hypnotic effect being proportional to the dosage of the drug.

Conclusion: SZS demonstrates sedative and hypnotic effects, potentially mediated by its influence on neurotransmitter levels and related receptors within the central nervous system. There was a slight variation in regulatory capabilities before and after SZS processing, with the combined decoction of crude and parched SZS exhibiting a more pronounced effect, particularly at higher dosages.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信