Distributed training of foundation models for ophthalmic diagnosis.

Sina Gholami, Fatema-E Jannat, Atalie Carina Thompson, Sally Shin Yee Ong, Jennifer I Lim, Theodore Leng, Hamed Tabkhivayghan, Minhaj Nur Alam
{"title":"Distributed training of foundation models for ophthalmic diagnosis.","authors":"Sina Gholami, Fatema-E Jannat, Atalie Carina Thompson, Sally Shin Yee Ong, Jennifer I Lim, Theodore Leng, Hamed Tabkhivayghan, Minhaj Nur Alam","doi":"10.1038/s44172-025-00341-5","DOIUrl":null,"url":null,"abstract":"<p><p>Vision impairment affects nearly 2.2 billion people globally, and nearly half of these cases could be prevented with early diagnosis and intervention-underscoring the urgent need for reliable and scalable detection methods for conditions like diabetic retinopathy and age-related macular degeneration. Here we propose a distributed deep learning framework that integrates self-supervised and domain-adaptive federated learning to enhance the detection of eye diseases from optical coherence tomography images. We employed a self-supervised, mask-based pre-training strategy to develop a robust foundation encoder. This encoder was trained on seven optical coherence tomography datasets, and we compared its performance under local, centralized, and federated learning settings. Our results show that self-supervised methods-both centralized and federated-improved the area under the curve by at least 10% compared to local models. Additionally, incorporating domain adaptation into the federated learning framework further boosted performance and generalization across different populations and imaging conditions. This approach supports collaborative model development without data sharing, providing a scalable, privacy-preserving solution for effective retinal disease screening and diagnosis in diverse clinical settings.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00341-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vision impairment affects nearly 2.2 billion people globally, and nearly half of these cases could be prevented with early diagnosis and intervention-underscoring the urgent need for reliable and scalable detection methods for conditions like diabetic retinopathy and age-related macular degeneration. Here we propose a distributed deep learning framework that integrates self-supervised and domain-adaptive federated learning to enhance the detection of eye diseases from optical coherence tomography images. We employed a self-supervised, mask-based pre-training strategy to develop a robust foundation encoder. This encoder was trained on seven optical coherence tomography datasets, and we compared its performance under local, centralized, and federated learning settings. Our results show that self-supervised methods-both centralized and federated-improved the area under the curve by at least 10% compared to local models. Additionally, incorporating domain adaptation into the federated learning framework further boosted performance and generalization across different populations and imaging conditions. This approach supports collaborative model development without data sharing, providing a scalable, privacy-preserving solution for effective retinal disease screening and diagnosis in diverse clinical settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信