Yunus Balel, Kaan Sağtaş, Fatih Teke, Mehmet Ali Kurt
{"title":"Artificial Intelligence-Based Detection and Numbering of Dental Implants on Panoramic Radiographs","authors":"Yunus Balel, Kaan Sağtaş, Fatih Teke, Mehmet Ali Kurt","doi":"10.1111/cid.70000","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized. Two deep-learning models were trained using the YOLOv8 algorithm. The first model classified the regions of the jaw to number the teeth and identify implant regions, while the second model performed implant segmentation. Performance metrics including precision, recall, and F1-score were used to evaluate the model's effectiveness.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The implant segmentation model achieved a precision of 91.4%, recall of 90.5%, and an F1-score of 93.1%. For the implant-numbering task, precision ranged from 0.94 to 0.981, recall from 0.895 to 0.956, and F1-scores from 0.917 to 0.966 across various jaw regions. The analysis revealed that implants were most frequently located in the maxillary posterior region.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The AI model demonstrated high accuracy in detecting and numbering dental implants in panoramic radiographs. This technology offers the potential to reduce clinicians' workload and improve diagnostic accuracy in dental implantology. Further validation across more diverse datasets is recommended to enhance its clinical applicability.</p>\n </section>\n \n <section>\n \n <h3> Clinical Relevance</h3>\n \n <p>This AI model could revolutionize dental implant detection and classification, providing fast, objective analyses to support clinical decision-making in dental practices.</p>\n </section>\n </div>","PeriodicalId":50679,"journal":{"name":"Clinical Implant Dentistry and Related Research","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Implant Dentistry and Related Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cid.70000","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.
Materials and Methods
A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized. Two deep-learning models were trained using the YOLOv8 algorithm. The first model classified the regions of the jaw to number the teeth and identify implant regions, while the second model performed implant segmentation. Performance metrics including precision, recall, and F1-score were used to evaluate the model's effectiveness.
Results
The implant segmentation model achieved a precision of 91.4%, recall of 90.5%, and an F1-score of 93.1%. For the implant-numbering task, precision ranged from 0.94 to 0.981, recall from 0.895 to 0.956, and F1-scores from 0.917 to 0.966 across various jaw regions. The analysis revealed that implants were most frequently located in the maxillary posterior region.
Conclusions
The AI model demonstrated high accuracy in detecting and numbering dental implants in panoramic radiographs. This technology offers the potential to reduce clinicians' workload and improve diagnostic accuracy in dental implantology. Further validation across more diverse datasets is recommended to enhance its clinical applicability.
Clinical Relevance
This AI model could revolutionize dental implant detection and classification, providing fast, objective analyses to support clinical decision-making in dental practices.
期刊介绍:
The goal of Clinical Implant Dentistry and Related Research is to advance the scientific and technical aspects relating to dental implants and related scientific subjects. Dissemination of new and evolving information related to dental implants and the related science is the primary goal of our journal.
The range of topics covered by the journals will include but be not limited to:
New scientific developments relating to bone
Implant surfaces and their relationship to the surrounding tissues
Computer aided implant designs
Computer aided prosthetic designs
Immediate implant loading
Immediate implant placement
Materials relating to bone induction and conduction
New surgical methods relating to implant placement
New materials and methods relating to implant restorations
Methods for determining implant stability
A primary focus of the journal is publication of evidenced based articles evaluating to new dental implants, techniques and multicenter studies evaluating these treatments. In addition basic science research relating to wound healing and osseointegration will be an important focus for the journal.