CardiacField: computational echocardiography for automated heart function estimation using two-dimensional echocardiography probes.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2024-09-24 eCollection Date: 2025-01-01 DOI:10.1093/ehjdh/ztae072
Chengkang Shen, Hao Zhu, You Zhou, Yu Liu, Si Yi, Lili Dong, Weipeng Zhao, David J Brady, Xun Cao, Zhan Ma, Yi Lin
{"title":"CardiacField: computational echocardiography for automated heart function estimation using two-dimensional echocardiography probes.","authors":"Chengkang Shen, Hao Zhu, You Zhou, Yu Liu, Si Yi, Lili Dong, Weipeng Zhao, David J Brady, Xun Cao, Zhan Ma, Yi Lin","doi":"10.1093/ehjdh/ztae072","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners. We assess the system's usability among novice users and evaluate its performance against expert interpretations and advanced deep learning (DL) tools.</p><p><strong>Methods and results: </strong>We developed an implicit neural representation network to reconstruct a 3D cardiac volume from sequential multi-view 2DE images, followed by automatic segmentation of LV and RV areas to calculate volume sizes and EF values. Our study involved 127 patients to assess EF estimation accuracy against expert readings and two-dimensional (2D) video-based DL models. A subset of 56 patients was utilized to evaluate image quality and 3D accuracy and another 50 to test usability by novice users and across various ultrasound machines. CardiacField generated a 3D heart from 2D echocardiograms with <2 min processing time. The LVEF predicted by our method had a mean absolute error (MAE) of <math><mn>2.48</mn> <mtext>%</mtext></math> , while the RVEF had an MAE of <math><mn>2.65</mn> <mtext>%</mtext></math> .</p><p><strong>Conclusion: </strong>Employing a straightforward apical ring scan with a cost-effective 2DE probe, our method achieves a level of EF accuracy for assessing LV and RV function that is comparable to that of three-dimensional echocardiography probes.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 1","pages":"137-146"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners. We assess the system's usability among novice users and evaluate its performance against expert interpretations and advanced deep learning (DL) tools.

Methods and results: We developed an implicit neural representation network to reconstruct a 3D cardiac volume from sequential multi-view 2DE images, followed by automatic segmentation of LV and RV areas to calculate volume sizes and EF values. Our study involved 127 patients to assess EF estimation accuracy against expert readings and two-dimensional (2D) video-based DL models. A subset of 56 patients was utilized to evaluate image quality and 3D accuracy and another 50 to test usability by novice users and across various ultrasound machines. CardiacField generated a 3D heart from 2D echocardiograms with <2 min processing time. The LVEF predicted by our method had a mean absolute error (MAE) of 2.48 % , while the RVEF had an MAE of 2.65 % .

Conclusion: Employing a straightforward apical ring scan with a cost-effective 2DE probe, our method achieves a level of EF accuracy for assessing LV and RV function that is comparable to that of three-dimensional echocardiography probes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信