{"title":"Personalized Respiratory Motion Modeling Incorporating Longitudinal Data through Two-stage Transfer Learning.","authors":"Peizhi Chen, Xupeng Zou, Yifan Guo","doi":"10.2174/0115734056325170250114210309","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to develop an accurate image registration framework for personalized respiratory motion modeling.</p><p><strong>Methods: </strong>The proposed framework incorporates longitudinal data through a two-stage transfer learning approach. In the first stage, transfer learning is employed on longitudinal data collected from the same device. In the second stage, a personalized model is constructed using the transfer learning approach, reusing the model from the first stage. A novel cross-error function is introduced to guide the customized adaptation stage.</p><p><strong>Results: </strong>The experiments demonstrate the effectiveness of the proposed framework in respiratory motion modeling. Integrating longitudinal data allows for improved accuracy for personalized respiratory motion modeling.</p><p><strong>Conclusion: </strong>The study presents a novel approach that incorporates longitudinal data into a two-stage transfer learning process for personalized respiratory motion modeling. The framework demonstrates improved accuracy. The results highlight the potential of leveraging longitudinal data to provide personalized image registration solutions.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056325170250114210309","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to develop an accurate image registration framework for personalized respiratory motion modeling.
Methods: The proposed framework incorporates longitudinal data through a two-stage transfer learning approach. In the first stage, transfer learning is employed on longitudinal data collected from the same device. In the second stage, a personalized model is constructed using the transfer learning approach, reusing the model from the first stage. A novel cross-error function is introduced to guide the customized adaptation stage.
Results: The experiments demonstrate the effectiveness of the proposed framework in respiratory motion modeling. Integrating longitudinal data allows for improved accuracy for personalized respiratory motion modeling.
Conclusion: The study presents a novel approach that incorporates longitudinal data into a two-stage transfer learning process for personalized respiratory motion modeling. The framework demonstrates improved accuracy. The results highlight the potential of leveraging longitudinal data to provide personalized image registration solutions.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.