Validation framework for in vivo digital measures.

IF 3.6 Q2 TOXICOLOGY
Frontiers in toxicology Pub Date : 2025-01-08 eCollection Date: 2024-01-01 DOI:10.3389/ftox.2024.1484895
Szczepan W Baran, Susan E Bolin, Stefano Gaburro, Marcel M van Gaalen, Megan R LaFollette, Chang-Ning Liu, Sean Maguire, Lucas P J J Noldus, Natalie Bratcher-Petersen, Brian R Berridge
{"title":"Validation framework for <i>in vivo</i> digital measures.","authors":"Szczepan W Baran, Susan E Bolin, Stefano Gaburro, Marcel M van Gaalen, Megan R LaFollette, Chang-Ning Liu, Sean Maguire, Lucas P J J Noldus, Natalie Bratcher-Petersen, Brian R Berridge","doi":"10.3389/ftox.2024.1484895","DOIUrl":null,"url":null,"abstract":"<p><p>The adoption of <i>in vivo</i> digital measures in pharmaceutical research and development (R&D) presents an opportunity to enhance the efficiency and effectiveness of discovering and developing new therapeutics. For clinical measures, the Digital Medicine Society's (DiMe) V3 Framework is a comprehensive validation framework that encompasses verification, analytical validation, and clinical validation. This manuscript describes collaborative efforts to adapt this framework to ensure the reliability and relevance of digital measures for a preclinical context. Verification ensures that digital technologies accurately capture and store raw data. Analytical validation assesses the precision and accuracy of algorithms that transform raw data into meaningful biological metrics. Clinical validation confirms that these digital measures accurately reflect the biological or functional states in animal models relevant to their context of use. By widely adopting this structured approach, stakeholders-including researchers, technology developers, and regulators-can enhance the reliability and applicability of digital measures in preclinical research, ultimately supporting more robust and translatable drug discovery and development processes.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":"6 ","pages":"1484895"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2024.1484895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The adoption of in vivo digital measures in pharmaceutical research and development (R&D) presents an opportunity to enhance the efficiency and effectiveness of discovering and developing new therapeutics. For clinical measures, the Digital Medicine Society's (DiMe) V3 Framework is a comprehensive validation framework that encompasses verification, analytical validation, and clinical validation. This manuscript describes collaborative efforts to adapt this framework to ensure the reliability and relevance of digital measures for a preclinical context. Verification ensures that digital technologies accurately capture and store raw data. Analytical validation assesses the precision and accuracy of algorithms that transform raw data into meaningful biological metrics. Clinical validation confirms that these digital measures accurately reflect the biological or functional states in animal models relevant to their context of use. By widely adopting this structured approach, stakeholders-including researchers, technology developers, and regulators-can enhance the reliability and applicability of digital measures in preclinical research, ultimately supporting more robust and translatable drug discovery and development processes.

体内数字测量的验证框架。
在药物研究和开发(R&D)中采用体内数字测量为提高发现和开发新疗法的效率和有效性提供了机会。对于临床措施,数字医学协会(DiMe) V3框架是一个全面的验证框架,包括验证、分析验证和临床验证。该手稿描述了协作努力,以适应该框架,以确保临床前背景下数字测量的可靠性和相关性。验证确保数字技术准确地捕获和存储原始数据。分析验证评估将原始数据转换为有意义的生物指标的算法的精度和准确性。临床验证证实,这些数字测量准确地反映了与其使用背景相关的动物模型中的生物学或功能状态。通过广泛采用这种结构化方法,包括研究人员、技术开发人员和监管机构在内的利益相关者可以提高数字测量在临床前研究中的可靠性和适用性,最终支持更稳健和可翻译的药物发现和开发过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信