Modeling impairment of ionic regulation with extended Adaptive Exponential integrate-and-fire models.

IF 1.5 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Journal of Computational Neuroscience Pub Date : 2025-03-01 Epub Date: 2025-01-23 DOI:10.1007/s10827-025-00893-7
Damien Depannemaecker, Federico Tesler, Mathieu Desroches, Viktor Jirsa, Alain Destexhe
{"title":"Modeling impairment of ionic regulation with extended Adaptive Exponential integrate-and-fire models.","authors":"Damien Depannemaecker, Federico Tesler, Mathieu Desroches, Viktor Jirsa, Alain Destexhe","doi":"10.1007/s10827-025-00893-7","DOIUrl":null,"url":null,"abstract":"<p><p>To model the dynamics of neuron membrane excitability many models can be considered, from the most biophysically detailed to the highest level of phenomenological description. Recent works at the single neuron level have shown the importance of taking into account the evolution of slow variables such as ionic concentration. A reduction of such a model to models of the integrate-and-fire family is interesting to then go to large network models. In this paper, we introduce a way to consider the impairment of ionic regulation by adding a third, slow, variable to the adaptive Exponential integrate-and-fire model (AdEx). We then implement and simulate a network including this model. We find that this network was able to generate normal and epileptic discharges. This model should be useful for the design of network simulations of normal and pathological states.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":"1-8"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-025-00893-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To model the dynamics of neuron membrane excitability many models can be considered, from the most biophysically detailed to the highest level of phenomenological description. Recent works at the single neuron level have shown the importance of taking into account the evolution of slow variables such as ionic concentration. A reduction of such a model to models of the integrate-and-fire family is interesting to then go to large network models. In this paper, we introduce a way to consider the impairment of ionic regulation by adding a third, slow, variable to the adaptive Exponential integrate-and-fire model (AdEx). We then implement and simulate a network including this model. We find that this network was able to generate normal and epileptic discharges. This model should be useful for the design of network simulations of normal and pathological states.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信