Transposable elements shape the landscape of heterozygous structural variation in a bird genome.

IF 4 1区 生物学 Q1 ZOOLOGY
Bo-Ping Li, Na Kang, Zao-Xu Xu, Hao-Ran Luo, Shi-Yu Fan, Xiao-Han Ao, Xing Li, Ya-Peng Han, Xiao-Bin Ou, Luo-Hao Xu
{"title":"Transposable elements shape the landscape of heterozygous structural variation in a bird genome.","authors":"Bo-Ping Li, Na Kang, Zao-Xu Xu, Hao-Ran Luo, Shi-Yu Fan, Xiao-Han Ao, Xing Li, Ya-Peng Han, Xiao-Bin Ou, Luo-Hao Xu","doi":"10.24272/j.issn.2095-8137.2024.237","DOIUrl":null,"url":null,"abstract":"<p><p>Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( <i>Chrysolophus pictus</i>), a species distinguished by the vibrant plumage of males. Each haploid genome assembly included complete chromosomal models, incorporating all microchromosomes. Analysis revealed extensive tandem amplification of immune-related genes across the smallest microchromosomes (dot chromosomes), with an average copy number of 54. Structural variation between the haploid genomes was primarily shaped by large insertions and deletions (indels), with minimal contributions from inversions or duplications. Approximately 28% of these large indels were associated with recent insertions of transposable elements, despite their typically low activity in bird genomes. Evidence for significant effects of transposable elements on gene expression was minimal. Evolutionary strata on the sex chromosomes were identified, along with a drastic rearrangement of the W chromosome. These analyses of the high-quality diploid genome of the golden pheasant provide valuable insights into the evolutionary patterns of structural variation in avian genomes.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 1","pages":"75-86"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.237","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( Chrysolophus pictus), a species distinguished by the vibrant plumage of males. Each haploid genome assembly included complete chromosomal models, incorporating all microchromosomes. Analysis revealed extensive tandem amplification of immune-related genes across the smallest microchromosomes (dot chromosomes), with an average copy number of 54. Structural variation between the haploid genomes was primarily shaped by large insertions and deletions (indels), with minimal contributions from inversions or duplications. Approximately 28% of these large indels were associated with recent insertions of transposable elements, despite their typically low activity in bird genomes. Evidence for significant effects of transposable elements on gene expression was minimal. Evolutionary strata on the sex chromosomes were identified, along with a drastic rearrangement of the W chromosome. These analyses of the high-quality diploid genome of the golden pheasant provide valuable insights into the evolutionary patterns of structural variation in avian genomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信