DNA2 knockout aggravates cerebral ischemia/reperfusion injury by reducing postsynaptic Homer1a.

IF 4 1区 生物学 Q1 ZOOLOGY
Ting Ma, Yu-Meng Li, Peng-Yu Ren, Shi-Quan Wang, Xiang-Long Liu, Wen-Bo Lv, Wu-Gang Hou, Wen-Qiang Zuo, Wei-Qiang Lin, Jian Sima, An-Qi Geng
{"title":"DNA2 knockout aggravates cerebral ischemia/reperfusion injury by reducing postsynaptic Homer1a.","authors":"Ting Ma, Yu-Meng Li, Peng-Yu Ren, Shi-Quan Wang, Xiang-Long Liu, Wen-Bo Lv, Wu-Gang Hou, Wen-Qiang Zuo, Wei-Qiang Lin, Jian Sima, An-Qi Geng","doi":"10.24272/j.issn.2095-8137.2024.269","DOIUrl":null,"url":null,"abstract":"<p><p>DNA2, a multifunctional enzyme with structure-specific nuclease, 5 <i>'</i>-to-3 <i>'</i> helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( <i>Nestin</i>-Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R. Results demonstrated a gradual up-regulation of DNA2 expression, peaking at 72 h post-MCAO. Notably, <i>DNA2</i> cKO mice exhibited more pronounced brain injury, neurological deficits, and neuronal apoptosis within the penumbra following MCAO. Additionally, DNA2 expression was elevated in an oxygen-glucose deprivation/reoxygenation (OGD/R) cell culture model, and <i>DNA2</i> knockdown (KD) exacerbated neuronal apoptosis and oxidative stress. Transcriptome analysis of ischemic penumbra tissues via RNA sequencing revealed significant down-regulation of <i>Homer1</i> in <i>DNA2</i> cKO mice. Furthermore, <i>in</i> <i>vitro</i> experiments demonstrated that overexpression of <i>Homer1a</i> ameliorated <i>DNA2</i> KD-induced neuronal apoptosis. Collectively, these findings demonstrate that <i>DNA2</i> deficiency exacerbates cerebral I/R injury through the down-regulation of <i>Homer1a</i>, highlighting a novel regulatory axis in ischemic neuroprotection.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 1","pages":"87-102"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.269","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 '-to-3 ' helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( Nestin-Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R. Results demonstrated a gradual up-regulation of DNA2 expression, peaking at 72 h post-MCAO. Notably, DNA2 cKO mice exhibited more pronounced brain injury, neurological deficits, and neuronal apoptosis within the penumbra following MCAO. Additionally, DNA2 expression was elevated in an oxygen-glucose deprivation/reoxygenation (OGD/R) cell culture model, and DNA2 knockdown (KD) exacerbated neuronal apoptosis and oxidative stress. Transcriptome analysis of ischemic penumbra tissues via RNA sequencing revealed significant down-regulation of Homer1 in DNA2 cKO mice. Furthermore, in vitro experiments demonstrated that overexpression of Homer1a ameliorated DNA2 KD-induced neuronal apoptosis. Collectively, these findings demonstrate that DNA2 deficiency exacerbates cerebral I/R injury through the down-regulation of Homer1a, highlighting a novel regulatory axis in ischemic neuroprotection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信